Submission #341047

# Submission time Handle Problem Language Result Execution time Memory
341047 2020-12-28T23:57:35 Z 12tqian Horses (IOI15_horses) C++17
100 / 100
1025 ms 49772 KB
#include "horses.h"
#include <bits/stdc++.h>
using namespace std;
 
const int MOD = 1e9 + 7;
template <int MOD, int RT> struct Mint {
    static const int mod = MOD;
    static constexpr Mint rt() { return RT; } // primitive root for FFT
    int v; 
    explicit operator int() const { return v; } // explicit -> don't silently convert to int
    Mint() { v = 0; }
    Mint(long long _v) { v = int((-MOD < _v && _v < MOD) ? _v : _v % MOD); if (v < 0) v += MOD; }
    friend bool operator == (const Mint& a, const Mint& b) { return a.v == b.v; }
    friend bool operator != (const Mint& a, const Mint& b) { return !(a == b); }
    friend bool operator < (const Mint& a, const Mint& b) { return a.v < b.v; }
    friend bool operator > (const Mint& a, const Mint& b) { return a.v > b.v; }
    friend bool operator <= (const Mint& a, const Mint& b) { return a.v <= b.v; }
    friend bool operator >= (const Mint& a, const Mint& b) { return a.v >= b.v; }
    friend std::istream& operator >> (std::istream& in, Mint& a) { 
        long long x; std::cin >> x; a = Mint(x); return in; }
    friend std::ostream& operator << (std::ostream& os, const Mint& a) { return os << a.v; }
    Mint& operator += (const Mint& m) { 
        if ((v += m.v) >= MOD) v -= MOD; 
        return *this; }
    Mint& operator -= (const Mint& m) { 
        if ((v -= m.v) < 0) v += MOD; 
        return *this; }
    Mint& operator *= (const Mint& m) { 
        v = (long long ) v * m.v % MOD; return *this; }
    Mint& operator /= (const Mint& m) { return (*this) *= inv(m); }
    friend Mint pow(Mint a, long long p) {
        Mint ans = 1; assert(p >= 0);
        for (; p; p /= 2, a *= a) if (p & 1) ans *= a;
        return ans; 
    }
    friend Mint inv(const Mint& a) { assert(a.v != 0); return pow(a, MOD - 2); }
    Mint operator - () const { return Mint(-v); }
    Mint& operator ++ () { return *this += 1; }
    Mint& operator -- () { return *this -= 1; }
    friend Mint operator + (Mint a, const Mint& b) { return a += b; }
    friend Mint operator - (Mint a, const Mint& b) { return a -= b; }
    friend Mint operator * (Mint a, const Mint& b) { return a *= b; }
    friend Mint operator / (Mint a, const Mint& b) { return a /= b; }
};
 
using mi = Mint<MOD, 5>;
typedef double db;
 
template <class T> struct LazySeg {
    std::vector<T> mn, lazy;
    vector<int> id;
    int sz;
    void init(int sz_) {
        sz = 1;
        while (sz < sz_) sz *= 2;
        mn.assign(2 * sz, 0);
        lazy.assign(2 * sz, 0);
        id.assign(2 * sz, 0);
        for (int i = 0; i < sz; i++)
            id[i + sz] = i;
        build();
    }
    void push(int ind, int L, int R) {
        mn[ind] += lazy[ind];
        if (L != R) {
            lazy[2 * ind] += lazy[ind];
            lazy[2 * ind + 1] += lazy[ind];
        }
        lazy[ind] = 0;
    }
    void pull(int ind) {
        if (mn[2 * ind] >= mn[2 * ind + 1]) {
            mn[ind] = mn[2 * ind];
            id[ind] = id[2 * ind];
        } else {
            mn[ind] = mn[2 *ind + 1];
            id[ind] = id[2 * ind + 1];
        }
 
    }
    void build() {
        for (int i = sz - 1; i >= 1; i--) {
            pull(i);
        }
    }
    void upd(int lo, int hi, T inc, int ind = 1, int L = 0, int R = -1) {
        if (R == -1) R += sz;
        push(ind, L, R);
        if (hi < L || R < lo) return;
        if (lo <= L && R <= hi) {
            lazy[ind] = inc;
            push(ind, L, R);
            return;
        }
        int M = (L + R) / 2;
        upd(lo, hi, inc, 2 * ind, L, M);
        upd(lo, hi, inc, 2 * ind + 1, M + 1, R);
        pull(ind);
    }
    pair<T, int> qmin(int lo, int hi, int ind = 1, int L = 0, int R = -1) {
        if (R == -1) R += sz;
        push(ind, L, R);
        if (lo > R || L > hi) return {0, id[ind]};
        if (lo <= L && R <= hi) return {mn[ind], id[ind]};
        int M = (L + R) / 2;
        return max(qmin(lo, hi, 2 * ind, L, M), qmin(lo, hi, 2 * ind + 1, M + 1, R));
    }
};
template <class T> struct LazySegProd {
    std::vector<T> mn, lazy;
    int sz;
    void init(int sz_) {
        sz = 1;
        while (sz < sz_) sz *= 2;
        mn.assign(2 * sz, 1);
        lazy.assign(2 * sz, 1);
    }
    void push(int ind, int L, int R) {
        mn[ind] *= lazy[ind];
        if (L != R) {
            lazy[2 * ind] *= lazy[ind];
            lazy[2 * ind + 1] *= lazy[ind];
        }
        lazy[ind] = 1;
    }
    void upd(int lo, int hi, T inc, int ind = 1, int L = 0, int R = -1) {
        if (R == -1) R += sz;
        push(ind, L, R);
        if (hi < L || R < lo) return;
        if (lo <= L && R <= hi) {
            lazy[ind] = inc;
            push(ind, L, R);
            return;
        }
        int M = (L + R) / 2;
        upd(lo, hi, inc, 2 * ind, L, M);
        upd(lo, hi, inc, 2 * ind + 1, M + 1, R);
    }
    T qmin(int lo, int hi, int ind = 1, int L = 0, int R = -1) {
        if (R == -1) R += sz;
        push(ind, L, R);
        if (lo > R || L > hi) return MOD - 1;
        if (lo <= L && R <= hi) return mn[ind];
        int M = (L + R) / 2;
        return min(qmin(lo, hi, 2 * ind, L, M), qmin(lo, hi, 2 * ind + 1, M + 1, R));
    }
};
 
 
int n;
LazySegProd<mi> seg_compute;
LazySeg<db> seg;
vector<int> x, y;
mi ask() {
    int id = seg.qmin(0, n-1).second;
    return seg_compute.qmin(id, id);
}
int init(int N, int X[], int Y[]) {
    n = N;
    seg_compute.init(n);
    seg.init(n);
    x.reserve(n), y.reserve(n);
    mi run = 1;
    db sum = 0;
    for (int i = 0; i < n; i++) {
        x[i] = X[i], y[i] = Y[i];
        run *= x[i];
        sum += log2(x[i]);
        seg_compute.upd(i, i, run * y[i]);
        seg.upd(i, i, sum + log2(y[i]));
    }
    return ask().v;
}
 
int updateX(int pos, int val) { 
    db diff = log2(val) - log2(x[pos]);
    mi change = val / mi(x[pos]);
    seg.upd(pos, n-1, diff);
    seg_compute.upd(pos, n-1, change);
    x[pos] = val;
    return ask().v;
}
 
int updateY(int pos, int val) {
    db diff = log2(val) - log2(y[pos]);
    mi change = val / mi(y[pos]);
    seg.upd(pos, pos, diff);
    seg_compute.upd(pos, pos, change);
    y[pos] = val;
    return ask().v;
}

Compilation message

horses.cpp: In instantiation of 'Mint<MOD, RT>& Mint<MOD, RT>::operator*=(const Mint<MOD, RT>&) [with int MOD = 1000000007; int RT = 5]':
horses.cpp:167:19:   required from here
horses.cpp:29:34: warning: conversion from 'long long int' to 'int' may change value [-Wconversion]
   29 |         v = (long long ) v * m.v % MOD; return *this; }
      |             ~~~~~~~~~~~~~~~~~~~~~^~~~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 364 KB Output is correct
2 Correct 0 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 0 ms 364 KB Output is correct
10 Correct 0 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 0 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 1 ms 512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 1 ms 364 KB Output is correct
22 Correct 1 ms 364 KB Output is correct
23 Correct 3 ms 364 KB Output is correct
24 Correct 2 ms 364 KB Output is correct
25 Correct 2 ms 364 KB Output is correct
26 Correct 2 ms 364 KB Output is correct
27 Correct 2 ms 364 KB Output is correct
28 Correct 3 ms 364 KB Output is correct
29 Correct 2 ms 364 KB Output is correct
30 Correct 2 ms 364 KB Output is correct
31 Correct 3 ms 492 KB Output is correct
32 Correct 2 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 758 ms 38072 KB Output is correct
2 Correct 1025 ms 38124 KB Output is correct
3 Correct 990 ms 41712 KB Output is correct
4 Correct 1012 ms 44524 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 0 ms 364 KB Output is correct
9 Correct 0 ms 364 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 0 ms 364 KB Output is correct
19 Correct 0 ms 364 KB Output is correct
20 Correct 0 ms 364 KB Output is correct
21 Correct 1 ms 364 KB Output is correct
22 Correct 1 ms 364 KB Output is correct
23 Correct 2 ms 364 KB Output is correct
24 Correct 2 ms 364 KB Output is correct
25 Correct 2 ms 364 KB Output is correct
26 Correct 2 ms 364 KB Output is correct
27 Correct 2 ms 364 KB Output is correct
28 Correct 3 ms 364 KB Output is correct
29 Correct 2 ms 364 KB Output is correct
30 Correct 2 ms 364 KB Output is correct
31 Correct 2 ms 364 KB Output is correct
32 Correct 2 ms 364 KB Output is correct
33 Correct 600 ms 37100 KB Output is correct
34 Correct 613 ms 37228 KB Output is correct
35 Correct 617 ms 37100 KB Output is correct
36 Correct 624 ms 37100 KB Output is correct
37 Correct 572 ms 37056 KB Output is correct
38 Correct 599 ms 37100 KB Output is correct
39 Correct 560 ms 36972 KB Output is correct
40 Correct 597 ms 37356 KB Output is correct
41 Correct 553 ms 37228 KB Output is correct
42 Correct 550 ms 37100 KB Output is correct
43 Correct 571 ms 36972 KB Output is correct
44 Correct 567 ms 36972 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 0 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 0 ms 364 KB Output is correct
10 Correct 0 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 0 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 0 ms 364 KB Output is correct
15 Correct 0 ms 364 KB Output is correct
16 Correct 0 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 1 ms 364 KB Output is correct
22 Correct 1 ms 364 KB Output is correct
23 Correct 3 ms 364 KB Output is correct
24 Correct 2 ms 364 KB Output is correct
25 Correct 2 ms 364 KB Output is correct
26 Correct 2 ms 364 KB Output is correct
27 Correct 2 ms 364 KB Output is correct
28 Correct 3 ms 364 KB Output is correct
29 Correct 2 ms 364 KB Output is correct
30 Correct 3 ms 364 KB Output is correct
31 Correct 2 ms 364 KB Output is correct
32 Correct 3 ms 364 KB Output is correct
33 Correct 769 ms 38020 KB Output is correct
34 Correct 1010 ms 38124 KB Output is correct
35 Correct 951 ms 41836 KB Output is correct
36 Correct 1014 ms 44240 KB Output is correct
37 Correct 610 ms 40940 KB Output is correct
38 Correct 606 ms 41052 KB Output is correct
39 Correct 622 ms 41868 KB Output is correct
40 Correct 624 ms 41964 KB Output is correct
41 Correct 574 ms 39276 KB Output is correct
42 Correct 593 ms 40156 KB Output is correct
43 Correct 551 ms 39020 KB Output is correct
44 Correct 600 ms 42860 KB Output is correct
45 Correct 549 ms 39020 KB Output is correct
46 Correct 550 ms 39156 KB Output is correct
47 Correct 573 ms 43492 KB Output is correct
48 Correct 569 ms 43244 KB Output is correct
49 Correct 971 ms 43100 KB Output is correct
50 Correct 970 ms 43204 KB Output is correct
51 Correct 819 ms 49772 KB Output is correct
52 Correct 876 ms 49516 KB Output is correct
53 Correct 959 ms 41572 KB Output is correct
54 Correct 917 ms 41864 KB Output is correct
55 Correct 787 ms 40300 KB Output is correct
56 Correct 870 ms 44956 KB Output is correct
57 Correct 756 ms 40812 KB Output is correct
58 Correct 762 ms 41324 KB Output is correct
59 Correct 577 ms 43244 KB Output is correct