Submission #339797

# Submission time Handle Problem Language Result Execution time Memory
339797 2020-12-26T08:38:18 Z Thistle Pinball (JOI14_pinball) C++14
100 / 100
436 ms 26696 KB
#pragma GCC target ("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
using H = pair<ll, ll>;
using P = pair<ll, H>;
using vi = vector<ll>;
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define pb emplace_back
#define siz(a) (int)(a).size()
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) (lower_bound(all(b),(i))-(b).begin())
#define ssp(i,n) (i==(ll)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.root(x)!=a.end())
constexpr ll mod = (ll)1e9 + 7;
constexpr ll Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll ppc(ll x) {
    int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
    return sum;
}
void fin1() { printf("-1\n"); exit(0); }
void fin0() { printf("0\n"); exit(0); }

template<typename T>
class csum {
    vec<T> v;
public:
    csum(vec<T>& a) :v(a) { build(); }
    csum() {}
    csum(int sz) { init(sz); }
    void init(int sz) { v = vector<T>(sz, 0); }
    void init(vec<T>& a) { v = a; build(); }
    void build() {
        for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
    }
    void add(int l, int r, T x) {
        v[l] += x;
        v[r] -= x;
    }//[l,r)
    //[l,r]
    T a(int l, int r) {
        if (r < l) return 0;
        return v[r] - (l == 0 ? 0 : v[l - 1]);
    }
    //[l,r)
    T b(int l, int r) {
        return a(l, r - 1);
    }
    T a(pair<int, int>t) {
        return a(t.first, t.second);
    }
    T b(pair<int, int>t) {
        return b(t.first, t.second);
    }
    T operator[](int x)const {
        return v[x];
    }
};
template<ll mod>
class modint {
public:ll v;
      modint(ll v = 0) { s(v % mod + mod); }
      constexpr static int fn_ = (ll)2e6 + 5;
      static vector<modint>fact, comp;
      modint pow(ll x) const {
          modint b(v), c(1);
          while (x) {
              if (x & 1) c *= b;
              b *= b;
              x >>= 1;
          }
          return c;
      }
      inline modint& s(int vv) {
          v = vv < mod ? vv : vv - mod;
          return *this;
      }
      inline modint inv()const { return pow(mod - 2); }
      inline modint operator-()const { return modint() - *this; }
      inline modint& operator+=(const modint b) { return s(v + b.v); }
      inline modint& operator-=(const modint b) { return s(v + mod - b.v); }
      inline modint& operator*=(const modint b) { v = v * b.v % mod; return *this; }
      inline modint& operator/=(const modint b) { v = v * b.inv().v % mod; return *this; }
      inline modint operator+(const modint& b) const { return modint(v) += b; }
      inline modint operator-(const modint& b) const { return modint(v) -= b; }
      inline modint operator*(const modint& b) const { return modint(v) *= b; }
      inline modint operator/(const modint& b) const { return modint(v) /= b; }
      friend ostream& operator<<(ostream& os, const modint& m) {
          return os << m.v;
      }
      friend istream& operator>>(istream& is, modint& m) {
          int x; is >> x; m = modint(x);
          return is;
      }
      bool operator<(const modint& r)const { return v < r.v; }
      bool operator>(const modint& r)const { return v > r.v; }
      bool operator<=(const modint& r)const { return v <= r.v; }
      bool operator>=(const modint& r)const { return v >= r.v; }
      bool operator==(const modint& r)const { return v == r.v; }
      bool operator!=(const modint& r)const { return v != r.v; }
      explicit operator bool()const { return v; }
      explicit operator int()const { return v; }
      modint comb(modint k) {
          if (k > *this) return modint();
          if (fact.empty()) combinit();
          if (v >= fn_) {
              if (k > *this - k) k = *this - k;
              modint tmp(1);
              for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
              return tmp * comp[k.v];
          }
          return fact[v] * comp[k.v] * comp[v - k.v];
      }//nCk
      modint perm(modint k) {
          if (k > *this) return modint();
          if (fact.empty()) combinit();
          if (v >= fn_) {
              modint tmp(1);
              for (int i = v; i >= v - k.v + 1; i--) tmp *= modint(i);
              return tmp;
          }
          return fact[v] * comp[v - k.v];
      }//nPk
      static void combinit() {
          fact.assign(fn_, modint());
          fact[0] = 1;
          for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * modint(i);
          comp.assign(fn_, modint());
          comp[fn_ - 1] = fact[fn_ - 1].inv();
          for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * modint(i + 1);
      }
};
using mint = modint<ll(1e9 + 7)>; template<>vec<mint> mint::fact = vec<mint>(); template<>vec<mint> mint::comp = vec<mint>();
//--------------------------------------------------------------
//--------------------------------------------------------------
class Segtree {
    int n, rr;
    vi dat;
public:
    Segtree(int sz) :n(sz) {
        rr = 1;
        while (rr < sz) rr *= 2;
        dat.assign(2 * rr, inf);
    }//RmQ
    void update(int t, ll x) {
        t += rr;
        chmin(dat[t], x);
        while (t > 0) {
            t /= 2;
            chmin(dat[t], x);
        }
    }
    ll query(int a, int b) {
        return query(1, a, b, 0, rr);
    }
private:
    ll query(int i, int a, int b, int l, int r) {
        if (b <= l || r <= a) return inf;
        if (a <= l && r <= b) return dat[i];
        return min(query(i * 2, a, b, l, (l + r) / 2),
            query(i * 2 + 1, a, b, (l + r) / 2, r));
    }
};
struct st {
    ll a, b, c, d;
};
signed main() {
    int n, m;
    cin >> n >> m;
    vi pos = { 0,m - 1 };
    vec<st>v;
    rep(i, n) {
        ll a, b, c, d; cin >> a >> b >> c >> d;
        a--; b--; c--;
        v.pb(st{ a,b,c,d });
        pos.pb(a);
        pos.pb(b);
        pos.pb(c);
    }
    crdcomp(pos);
    rep(i, n) {
        v[i].a = getidx(pos, v[i].a);
        v[i].b = getidx(pos, v[i].b);
        v[i].c = getidx(pos, v[i].c);
    }
    Segtree lft(siz(pos)), rgt(siz(pos));
    lft.update(0, 0); rgt.update(siz(pos) - 1, 0);
    ll ans = inf;
    rep(i, n) {
        chmin(ans, lft.query(v[i].a, v[i].b + 1) + rgt.query(v[i].a, v[i].b + 1) + v[i].d);
        lft.update(v[i].c, lft.query(v[i].a, v[i].b + 1) + v[i].d);
        rgt.update(v[i].c, rgt.query(v[i].a, v[i].b + 1) + v[i].d);
    }
    if (ans == inf) ans = -1;
    cout << ans << endl;
}

Compilation message

pinball.cpp: In function 'll read()':
pinball.cpp:69:19: warning: unused variable 'k' [-Wunused-variable]
   69 | ll read() { ll u, k = scanf("%lld", &u); return u; }
      |                   ^
pinball.cpp: In function 'H readh(short int)':
pinball.cpp:71:33: warning: unused variable 'k' [-Wunused-variable]
   71 | H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
      |                                 ^
# Verdict Execution time Memory Grader output
1 Correct 1 ms 492 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 492 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 492 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 384 KB Output is correct
17 Correct 4 ms 504 KB Output is correct
18 Correct 3 ms 492 KB Output is correct
19 Correct 4 ms 620 KB Output is correct
20 Correct 3 ms 492 KB Output is correct
21 Correct 2 ms 492 KB Output is correct
22 Correct 3 ms 620 KB Output is correct
23 Correct 3 ms 620 KB Output is correct
24 Correct 3 ms 620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 492 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 1 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 364 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 384 KB Output is correct
17 Correct 4 ms 504 KB Output is correct
18 Correct 3 ms 492 KB Output is correct
19 Correct 4 ms 620 KB Output is correct
20 Correct 3 ms 492 KB Output is correct
21 Correct 2 ms 492 KB Output is correct
22 Correct 3 ms 620 KB Output is correct
23 Correct 3 ms 620 KB Output is correct
24 Correct 3 ms 620 KB Output is correct
25 Correct 31 ms 2404 KB Output is correct
26 Correct 89 ms 4824 KB Output is correct
27 Correct 293 ms 10944 KB Output is correct
28 Correct 288 ms 10824 KB Output is correct
29 Correct 204 ms 9296 KB Output is correct
30 Correct 331 ms 10952 KB Output is correct
31 Correct 428 ms 18244 KB Output is correct
32 Correct 401 ms 13892 KB Output is correct
33 Correct 56 ms 4444 KB Output is correct
34 Correct 194 ms 13392 KB Output is correct
35 Correct 313 ms 26696 KB Output is correct
36 Correct 436 ms 26336 KB Output is correct
37 Correct 402 ms 26472 KB Output is correct
38 Correct 385 ms 26308 KB Output is correct