Submission #334534

# Submission time Handle Problem Language Result Execution time Memory
334534 2020-12-09T10:42:21 Z tengiz05 Chessboard (IZhO18_chessboard) C++17
100 / 100
1889 ms 7036 KB
#pragma GCC target ("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#include <bits/stdc++.h>
  
using namespace std;
  
typedef long long ll;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
  
#define precision(n) fixed << setprecision(n)
#define pb push_back
#define ub upper_bound
#define lb lower_bound
#define mp make_pair
#define eps (double)1e-9
#define PI 2*acos(0.0)
#define endl "\n"
#define sz(v) int((v).size())
#define all(v) v.begin(),v.end()
#define rall(v) v.rbegin(),v.rend()
#define do_not_disturb ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define OK cout << "OK" << endl;
  
inline bool isvowel(char ch){
    ch = tolower(ch);
    return (ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u');
}
  
inline bool isprime(int n){
    if(n < 2 || (n%2 == 0 && n != 2)) return false;
    for(int i = 3; i*i <= n; i++)
        if(n%i == 0) return false;
    return true;
}
 
class Union{
    private:
        vector <int> saizu, link;
    public:
        Union(int n){
            saizu.assign(n, 1); link.resize(n); 
            iota(all(link), 0);
        }
        int find(int n){
            if(link[n] == n) return n;
            return link[n] = find(link[n]);
        }
        int same(int a, int b){
            return find(a) == find(b);
        }
        void unite(int a, int b){
            if(same(a, b)) return;
             
            a = find(a); b = find(b);
            if(saizu[a] < saizu[b]) swap(a, b);
             
            saizu[a] += saizu[b];
            link[b] = a;
        }
        int getsize(int a){
            return saizu[find(a)];
        }
};
 
const int mod = 1e9+7;
 
ll mode(ll a){
    a %= mod;
    if(a < 0) a += mod;
    return a;
}
 
ll subt(ll a, ll b){
    return mode(mode(a)-mode(b));
}
 
ll add(ll a, ll b){
    return mode(mode(a)+mode(b));
}
 
ll mult(ll a, ll b){
    return mode(mode(a)*mode(b));
}
 
ll binpow(ll a, ll b){
    ll res = 1;
    while(b){
        if(b&1) res = mult(res, a);
        a = mult(a, a);
        b >>= 1;
    }
    return res;
}
 
#define vl vector <ll> 
 
const int N = 1e5+7;
ll n, k;
 
inline ll rect_size(ll x1, ll y1, ll x2, ll y2){
    return (x2-x1+1)*(y2-y1+1);
}
 
inline ll pref(ll x, ll y, ll div){
    ll res = 0;
    ll x_1_mod_div = (x+1)%div, y_1_mod_div = (y+1)%div;
    ll x_full = x-x_1_mod_div, y_full = y-y_1_mod_div;
    ll full_s1 = (x_full+1)/div, full_s2 = (y_full+1)/div;
    ll x_full_div = (x_full+1)/div, y_full_div = (y_full+1)/div;
    
    res += ((full_s1*full_s2)&1 ? full_s1*full_s2/2+1 : full_s1*full_s2/2)*div*div;
    
    ll tmp;
    if((y_full_div)&1){
        int flag = x/div+y_full/div;
        if(flag&1){
            res += (x_1_mod_div)*(y_full_div/2)*div;
        }
        else{
            res += (x_1_mod_div)*(y_full_div/2+1)*div;
        }
    }
    else{
        tmp = (y_full+1)/2*(x_1_mod_div);
        res += tmp;
    }
    if((x_full_div)&1){
        int flag = y/div+x_full/div;
        if(flag&1){
            res += (y_1_mod_div)*(x_full_div/2)*div;
        }
        else{
            res += (y_1_mod_div)*(x_full_div/2+1)*div;
        }
    }
    else{
        tmp = (x_full+1)/2*(y_1_mod_div);
        res += tmp;
    }
    
    int flag = x/div+y/div;
    if(!(flag&1)){
        res += rect_size(x_full+1, y_full+1, x, y);
    }
    
    return res;
}
 
inline ll calc1(ll div, vl x1, vl y1, vl x2, vl y2){
    ll to_white = 0, to_black = ((n*n/div/div)&1 ? (n*n/div/div/2+1)*div*div : (n*n/2));
    for(ll i = 0; i < k; i++){
        ll blacks_in = pref(x2[i], y2[i], div)-(x1[i]-1 > -1 ? pref(x1[i]-1, y2[i], div) : 0)-(y1[i]-1 > -1 ? pref(x2[i], y1[i]-1, div) : 0)+
                      ((x1[i]-1 > -1) && (y1[i]-1 > -1) ? pref(x1[i]-1, y1[i]-1, div) : 0);
        to_black -= blacks_in;
        to_white += rect_size(x1[i], y1[i], x2[i], y2[i])-blacks_in;
    }
    
    return to_white+to_black;
}
 
int main(){
    do_not_disturb
    
    ll ans = 2e18, i;
    cin >> n >> k;
    vector <ll> x1(k), y1(k), x2(k), y2(k);
    
    for(i = 0; i < k; i++){
        cin >> x1[i] >> y1[i] >> x2[i] >> y2[i];
        x1[i]--; y1[i]--; x2[i]--; y2[i]--;
    }
    
    for(i = 1; i*i <= n; i++){
        if(n%i == 0){
            auto tmp = calc1(i, x1, y1, x2, y2);
            ans = min(ans, min(tmp, n*n-tmp));
            if(i > 1){
                tmp = calc1(n/i, x1, y1, x2, y2);
                ans = min(ans, min(tmp, n*n-tmp));
            }
        }
    }
    
    cout << ans;
    
    return 0;
}

Compilation message

chessboard.cpp:2: warning: ignoring #pragma GCC optimization [-Wunknown-pragmas]
    2 | #pragma GCC optimization ("O3")
      | 
chessboard.cpp:3: warning: ignoring #pragma GCC optimization [-Wunknown-pragmas]
    3 | #pragma GCC optimization ("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 0 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 0 ms 364 KB Output is correct
4 Correct 0 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 0 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 34 ms 4332 KB Output is correct
2 Correct 9 ms 1388 KB Output is correct
3 Correct 23 ms 2796 KB Output is correct
4 Correct 24 ms 3308 KB Output is correct
5 Correct 30 ms 3820 KB Output is correct
6 Correct 19 ms 2540 KB Output is correct
7 Correct 4 ms 748 KB Output is correct
8 Correct 21 ms 2540 KB Output is correct
9 Correct 49 ms 5996 KB Output is correct
10 Correct 29 ms 3436 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 2 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 512 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 1 ms 364 KB Output is correct
4 Correct 2 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 1 ms 364 KB Output is correct
9 Correct 1 ms 512 KB Output is correct
10 Correct 1 ms 364 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 1 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 20 ms 2100 KB Output is correct
17 Correct 39 ms 5612 KB Output is correct
18 Correct 73 ms 6572 KB Output is correct
19 Correct 348 ms 5936 KB Output is correct
20 Correct 387 ms 6648 KB Output is correct
21 Correct 37 ms 5484 KB Output is correct
22 Correct 2 ms 364 KB Output is correct
23 Correct 54 ms 3044 KB Output is correct
24 Correct 66 ms 5996 KB Output is correct
25 Correct 11 ms 876 KB Output is correct
26 Correct 42 ms 4076 KB Output is correct
27 Correct 69 ms 4636 KB Output is correct
28 Correct 81 ms 6380 KB Output is correct
29 Correct 16 ms 2412 KB Output is correct
30 Correct 2 ms 492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 34 ms 4332 KB Output is correct
2 Correct 9 ms 1388 KB Output is correct
3 Correct 23 ms 2796 KB Output is correct
4 Correct 24 ms 3308 KB Output is correct
5 Correct 30 ms 3820 KB Output is correct
6 Correct 19 ms 2540 KB Output is correct
7 Correct 4 ms 748 KB Output is correct
8 Correct 21 ms 2540 KB Output is correct
9 Correct 49 ms 5996 KB Output is correct
10 Correct 29 ms 3436 KB Output is correct
11 Correct 1 ms 364 KB Output is correct
12 Correct 1 ms 364 KB Output is correct
13 Correct 1 ms 364 KB Output is correct
14 Correct 2 ms 364 KB Output is correct
15 Correct 1 ms 364 KB Output is correct
16 Correct 1 ms 364 KB Output is correct
17 Correct 1 ms 364 KB Output is correct
18 Correct 1 ms 364 KB Output is correct
19 Correct 1 ms 512 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 1 ms 364 KB Output is correct
22 Correct 1 ms 364 KB Output is correct
23 Correct 1 ms 364 KB Output is correct
24 Correct 1 ms 364 KB Output is correct
25 Correct 1 ms 364 KB Output is correct
26 Correct 20 ms 2100 KB Output is correct
27 Correct 39 ms 5612 KB Output is correct
28 Correct 73 ms 6572 KB Output is correct
29 Correct 348 ms 5936 KB Output is correct
30 Correct 387 ms 6648 KB Output is correct
31 Correct 37 ms 5484 KB Output is correct
32 Correct 2 ms 364 KB Output is correct
33 Correct 54 ms 3044 KB Output is correct
34 Correct 66 ms 5996 KB Output is correct
35 Correct 11 ms 876 KB Output is correct
36 Correct 42 ms 4076 KB Output is correct
37 Correct 69 ms 4636 KB Output is correct
38 Correct 81 ms 6380 KB Output is correct
39 Correct 16 ms 2412 KB Output is correct
40 Correct 2 ms 492 KB Output is correct
41 Correct 314 ms 5732 KB Output is correct
42 Correct 79 ms 6260 KB Output is correct
43 Correct 165 ms 5644 KB Output is correct
44 Correct 75 ms 6112 KB Output is correct
45 Correct 54 ms 6508 KB Output is correct
46 Correct 342 ms 6200 KB Output is correct
47 Correct 46 ms 5740 KB Output is correct
48 Correct 123 ms 5840 KB Output is correct
49 Correct 70 ms 5616 KB Output is correct
50 Correct 1688 ms 6172 KB Output is correct
51 Correct 1795 ms 6596 KB Output is correct
52 Correct 1668 ms 6544 KB Output is correct
53 Correct 1788 ms 6640 KB Output is correct
54 Correct 1641 ms 6056 KB Output is correct
55 Correct 1849 ms 6932 KB Output is correct
56 Correct 1603 ms 5872 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 0 ms 364 KB Output is correct
4 Correct 0 ms 364 KB Output is correct
5 Correct 1 ms 364 KB Output is correct
6 Correct 1 ms 364 KB Output is correct
7 Correct 1 ms 364 KB Output is correct
8 Correct 0 ms 364 KB Output is correct
9 Correct 34 ms 4332 KB Output is correct
10 Correct 9 ms 1388 KB Output is correct
11 Correct 23 ms 2796 KB Output is correct
12 Correct 24 ms 3308 KB Output is correct
13 Correct 30 ms 3820 KB Output is correct
14 Correct 19 ms 2540 KB Output is correct
15 Correct 4 ms 748 KB Output is correct
16 Correct 21 ms 2540 KB Output is correct
17 Correct 49 ms 5996 KB Output is correct
18 Correct 29 ms 3436 KB Output is correct
19 Correct 1 ms 364 KB Output is correct
20 Correct 1 ms 364 KB Output is correct
21 Correct 1 ms 364 KB Output is correct
22 Correct 2 ms 364 KB Output is correct
23 Correct 1 ms 364 KB Output is correct
24 Correct 1 ms 364 KB Output is correct
25 Correct 1 ms 364 KB Output is correct
26 Correct 1 ms 364 KB Output is correct
27 Correct 1 ms 512 KB Output is correct
28 Correct 1 ms 364 KB Output is correct
29 Correct 1 ms 364 KB Output is correct
30 Correct 1 ms 364 KB Output is correct
31 Correct 1 ms 364 KB Output is correct
32 Correct 1 ms 364 KB Output is correct
33 Correct 1 ms 364 KB Output is correct
34 Correct 20 ms 2100 KB Output is correct
35 Correct 39 ms 5612 KB Output is correct
36 Correct 73 ms 6572 KB Output is correct
37 Correct 348 ms 5936 KB Output is correct
38 Correct 387 ms 6648 KB Output is correct
39 Correct 37 ms 5484 KB Output is correct
40 Correct 2 ms 364 KB Output is correct
41 Correct 54 ms 3044 KB Output is correct
42 Correct 66 ms 5996 KB Output is correct
43 Correct 11 ms 876 KB Output is correct
44 Correct 42 ms 4076 KB Output is correct
45 Correct 69 ms 4636 KB Output is correct
46 Correct 81 ms 6380 KB Output is correct
47 Correct 16 ms 2412 KB Output is correct
48 Correct 2 ms 492 KB Output is correct
49 Correct 314 ms 5732 KB Output is correct
50 Correct 79 ms 6260 KB Output is correct
51 Correct 165 ms 5644 KB Output is correct
52 Correct 75 ms 6112 KB Output is correct
53 Correct 54 ms 6508 KB Output is correct
54 Correct 342 ms 6200 KB Output is correct
55 Correct 46 ms 5740 KB Output is correct
56 Correct 123 ms 5840 KB Output is correct
57 Correct 70 ms 5616 KB Output is correct
58 Correct 1688 ms 6172 KB Output is correct
59 Correct 1795 ms 6596 KB Output is correct
60 Correct 1668 ms 6544 KB Output is correct
61 Correct 1788 ms 6640 KB Output is correct
62 Correct 1641 ms 6056 KB Output is correct
63 Correct 1849 ms 6932 KB Output is correct
64 Correct 1603 ms 5872 KB Output is correct
65 Correct 1 ms 364 KB Output is correct
66 Correct 1 ms 364 KB Output is correct
67 Correct 1764 ms 6380 KB Output is correct
68 Correct 1756 ms 6376 KB Output is correct
69 Correct 1543 ms 5700 KB Output is correct
70 Correct 1729 ms 6152 KB Output is correct
71 Correct 1689 ms 6588 KB Output is correct
72 Correct 1680 ms 6076 KB Output is correct
73 Correct 1610 ms 5888 KB Output is correct
74 Correct 1738 ms 6488 KB Output is correct
75 Correct 1689 ms 5944 KB Output is correct
76 Correct 1797 ms 6492 KB Output is correct
77 Correct 259 ms 6640 KB Output is correct
78 Correct 75 ms 6092 KB Output is correct
79 Correct 171 ms 5880 KB Output is correct
80 Correct 183 ms 6088 KB Output is correct
81 Correct 164 ms 5548 KB Output is correct
82 Correct 131 ms 6324 KB Output is correct
83 Correct 103 ms 5920 KB Output is correct
84 Correct 1035 ms 7036 KB Output is correct
85 Correct 1840 ms 6828 KB Output is correct
86 Correct 2 ms 364 KB Output is correct
87 Correct 1 ms 512 KB Output is correct
88 Correct 1889 ms 6696 KB Output is correct
89 Correct 345 ms 1728 KB Output is correct
90 Correct 1 ms 364 KB Output is correct