Submission #334508

# Submission time Handle Problem Language Result Execution time Memory
334508 2020-12-09T09:40:29 Z syy Fortune Telling 2 (JOI14_fortune_telling2) C++17
100 / 100
893 ms 102864 KB
/* WLOG assume a_i < b_i
 * then there are 3 kinds of updates
 * 1: x < b_i, 2: b_i <= x < a_i, 3: a_i <= x
 * ignore updates of type 1, updates of type 2 will ensure a_i is on top, type 3 will flip it
 * so for every card, find the last of type 2 then query number of type 3
 * process in decreasing order of "last type 2 update"
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
#define FOR(i, a, b) for(ll i = (ll)a; i <= (ll)b; i++)
#define DEC(i, a, b) for(ll i = (ll)a; i >= (ll)b; i--)
typedef pair<ll, ll> pi;
typedef pair<pi, ll> pii;
typedef pair<ll, pi> ipi;
typedef pair<pi, pi> pipi;
#define f first
#define s second
typedef vector<ll> vi;
typedef vector<pi> vpi;
typedef vector<pii> vpii;
#define pb push_back
#define pf push_front
#define all(v) v.begin(), v.end()
#define size(v) (ll) v.size()
#define INF (ll) 1e9 + 100
#define LLINF (ll) 1e18
#define fastio ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define sandybridge __attribute__((optimize("Ofast"), target("arch=sandybridge")))
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());    //can be used by calling rng() or shuffle(A, A+n, rng)
inline ll rand(ll x, ll y) { ++y; return (rng() % (y-x)) + x; } //inclusivesss

ll n, k, op[200005], ans;
pi arr[200005];
vi disc;
vpi v;

struct node {
	ll s, e, m, maxv;
	node *l, *r;
	node (ll S, ll E) {
		s = S, e = E, m = (s+e)/2, maxv = 0;
		if (s != e) {
			l = new node(s, m);
			r = new node(m+1, e);
		}
	}
	void maxup(ll x, ll nv) {
		if (s == e) {maxv = max(maxv, nv); return;}
		else if (x <= m) l->maxup(x, nv);
		else r->maxup(x, nv);
		maxv = max(l->maxv, r->maxv);
	}
	ll maxq(ll x, ll y) {
		if (s == x and e == y) return maxv;
		else if (y <= m) return l->maxq(x, y);
		else if (x > m) return r->maxq(x, y);
		else return max(l->maxq(x, m), r->maxq(m+1, y));
	}
} *seg;

ll ft[600005]; // note: this fenwick tree is 1-indexed.
ll ls(ll x) { return x & (-x); }

void up(ll p, ll v) {
	for (; p <= size(disc); p += ls(p)) ft[p] += v;
}

ll fquery(ll p) { //Returns sum from [1, p]
	ll sum = 0;
	for (;p; p -= ls(p)) sum += ft[p]; // while p > 0
	return sum;
}

inline ll query(ll a, ll b) {
	return fquery(b) - fquery(a-1);
}

int main() {
	fastio; cin >> n >> k;
	FOR(i, 1, n) {
		cin >> arr[i].f >> arr[i].s;
		disc.pb(arr[i].f);
		disc.pb(arr[i].s);
	}
	FOR(i, 1, k) {
		cin >> op[i];
		disc.pb(op[i]);
	}
	sort(all(disc));
	disc.resize(unique(all(disc)) - disc.begin());
	seg = new node(1, size(disc));
	FOR(i, 1, n) {
		arr[i].f = lower_bound(all(disc), arr[i].f) - disc.begin() + 1;
		arr[i].s = lower_bound(all(disc), arr[i].s) - disc.begin() + 1;
	}
	FOR(i, 1, k) {
		op[i] = lower_bound(all(disc), op[i]) - disc.begin() + 1;
		seg->maxup(op[i], i);
	}
	FOR(i, 1, n) {
		pi t = arr[i];
		if (t.f > t.s) swap(t.f, t.s);
		ll val = 0;
		if (t.f != t.s) val = seg->maxq(t.f, t.s-1);
		v.pb(pi(val, i));
	}
	sort(all(v), greater<pi>());
	ll idx = k;
	for (auto [x, i]:v) {
		while (idx > x) up(op[idx--], 1);
		int flip = 0;
		if (x == 0) flip = 0;
		else flip = (arr[i].f < arr[i].s ? 1 : 0);
		flip += query(max(arr[i].f, arr[i].s), size(disc));
		ans += (flip % 2 ? disc[arr[i].s-1] : disc[arr[i].f-1]);
	}
	cout << ans;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 492 KB Output is correct
2 Correct 2 ms 748 KB Output is correct
3 Correct 2 ms 876 KB Output is correct
4 Correct 2 ms 876 KB Output is correct
5 Correct 2 ms 876 KB Output is correct
6 Correct 2 ms 876 KB Output is correct
7 Correct 2 ms 876 KB Output is correct
8 Correct 2 ms 876 KB Output is correct
9 Correct 2 ms 876 KB Output is correct
10 Correct 2 ms 620 KB Output is correct
11 Correct 2 ms 748 KB Output is correct
12 Correct 2 ms 748 KB Output is correct
13 Correct 2 ms 748 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 492 KB Output is correct
2 Correct 2 ms 748 KB Output is correct
3 Correct 2 ms 876 KB Output is correct
4 Correct 2 ms 876 KB Output is correct
5 Correct 2 ms 876 KB Output is correct
6 Correct 2 ms 876 KB Output is correct
7 Correct 2 ms 876 KB Output is correct
8 Correct 2 ms 876 KB Output is correct
9 Correct 2 ms 876 KB Output is correct
10 Correct 2 ms 620 KB Output is correct
11 Correct 2 ms 748 KB Output is correct
12 Correct 2 ms 748 KB Output is correct
13 Correct 2 ms 748 KB Output is correct
14 Correct 23 ms 5356 KB Output is correct
15 Correct 56 ms 10348 KB Output is correct
16 Correct 90 ms 15636 KB Output is correct
17 Correct 127 ms 20200 KB Output is correct
18 Correct 137 ms 20200 KB Output is correct
19 Correct 124 ms 19944 KB Output is correct
20 Correct 124 ms 20200 KB Output is correct
21 Correct 115 ms 19944 KB Output is correct
22 Correct 76 ms 14440 KB Output is correct
23 Correct 69 ms 12008 KB Output is correct
24 Correct 63 ms 10088 KB Output is correct
25 Correct 74 ms 15976 KB Output is correct
26 Correct 79 ms 13800 KB Output is correct
27 Correct 91 ms 15080 KB Output is correct
28 Correct 82 ms 14952 KB Output is correct
29 Correct 101 ms 17516 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 492 KB Output is correct
2 Correct 2 ms 748 KB Output is correct
3 Correct 2 ms 876 KB Output is correct
4 Correct 2 ms 876 KB Output is correct
5 Correct 2 ms 876 KB Output is correct
6 Correct 2 ms 876 KB Output is correct
7 Correct 2 ms 876 KB Output is correct
8 Correct 2 ms 876 KB Output is correct
9 Correct 2 ms 876 KB Output is correct
10 Correct 2 ms 620 KB Output is correct
11 Correct 2 ms 748 KB Output is correct
12 Correct 2 ms 748 KB Output is correct
13 Correct 2 ms 748 KB Output is correct
14 Correct 23 ms 5356 KB Output is correct
15 Correct 56 ms 10348 KB Output is correct
16 Correct 90 ms 15636 KB Output is correct
17 Correct 127 ms 20200 KB Output is correct
18 Correct 137 ms 20200 KB Output is correct
19 Correct 124 ms 19944 KB Output is correct
20 Correct 124 ms 20200 KB Output is correct
21 Correct 115 ms 19944 KB Output is correct
22 Correct 76 ms 14440 KB Output is correct
23 Correct 69 ms 12008 KB Output is correct
24 Correct 63 ms 10088 KB Output is correct
25 Correct 74 ms 15976 KB Output is correct
26 Correct 79 ms 13800 KB Output is correct
27 Correct 91 ms 15080 KB Output is correct
28 Correct 82 ms 14952 KB Output is correct
29 Correct 101 ms 17516 KB Output is correct
30 Correct 283 ms 35644 KB Output is correct
31 Correct 415 ms 49756 KB Output is correct
32 Correct 552 ms 67292 KB Output is correct
33 Correct 868 ms 102864 KB Output is correct
34 Correct 257 ms 30436 KB Output is correct
35 Correct 876 ms 102736 KB Output is correct
36 Correct 883 ms 102760 KB Output is correct
37 Correct 893 ms 102608 KB Output is correct
38 Correct 844 ms 98256 KB Output is correct
39 Correct 853 ms 102712 KB Output is correct
40 Correct 784 ms 97592 KB Output is correct
41 Correct 861 ms 98372 KB Output is correct
42 Correct 848 ms 99596 KB Output is correct
43 Correct 464 ms 97360 KB Output is correct
44 Correct 462 ms 97360 KB Output is correct
45 Correct 469 ms 97104 KB Output is correct
46 Correct 457 ms 58724 KB Output is correct
47 Correct 393 ms 47440 KB Output is correct
48 Correct 586 ms 76192 KB Output is correct
49 Correct 564 ms 76256 KB Output is correct