/*
Code written by Talant I.D.
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
#define precision(n) fixed << setprecision(n)
#define pb push_back
#define ub upper_bound
#define lb lower_bound
#define mp make_pair
#define eps (double)1e-9
#define PI 2*acos(0.0)
#define endl "\n"
#define sz(v) int((v).size())
#define all(v) v.begin(),v.end()
#define rall(v) v.rbegin(),v.rend()
#define do_not_disturb ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define OK cout << "OK" << endl;
inline bool isvowel(char ch){
ch = tolower(ch);
return (ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u');
}
inline bool isprime(int n){
if(n < 2 || (n%2 == 0 && n != 2)) return false;
for(int i = 3; i*i <= n; i++)
if(n%i == 0) return false;
return true;
}
class Union{
private:
vector <int> saizu, link;
public:
Union(int n){
saizu.assign(n, 1); link.resize(n);
iota(all(link), 0);
}
int find(int n){
if(link[n] == n) return n;
return link[n] = find(link[n]);
}
int same(int a, int b){
return find(a) == find(b);
}
void unite(int a, int b){
if(same(a, b)) return;
a = find(a); b = find(b);
if(saizu[a] < saizu[b]) swap(a, b);
saizu[a] += saizu[b];
link[b] = a;
}
int getsize(int a){
return saizu[find(a)];
}
};
const int mod = 1e9+7;
ll mode(ll a){
a %= mod;
if(a < 0) a += mod;
return a;
}
ll subt(ll a, ll b){
return mode(mode(a)-mode(b));
}
ll add(ll a, ll b){
return mode(mode(a)+mode(b));
}
ll mult(ll a, ll b){
return mode(mode(a)*mode(b));
}
ll binpow(ll a, ll b){
ll res = 1;
while(b){
if(b&1) res = mult(res, a);
a = mult(a, a);
b >>= 1;
}
return res;
}
const int N = 5e5+7;
vector <vector <ll>> graph(N);
ll d_first, d_second, dist[N], on_diameter[N];
ll tmp, ind, cnt;
pll farthest[N];
vector <ll> d_ver;
void find_dends(ll v, ll p){
dist[v] = dist[p] + 1;
if(dist[v] > tmp){
ind = v;
tmp = dist[v];
}
for(auto to : graph[v]){
if(to != p){
find_dends(to, v);
}
}
}
void find_d(ll v, vector <ll> vec, ll p = -1){
vec.pb(v);
if(v == d_second){
d_ver = vec;
return;
}
for(auto to : graph[v]){
if(to != p){
find_d(to, vec, v);
}
}
vec.pop_back();
}
void find_far(ll v, ll p){
dist[v] = dist[p] + 1;
if(tmp < dist[v]){
tmp = dist[v];
cnt = 1;
}
else if(tmp == dist[v]){
cnt++;
}
for(auto to : graph[v]){
if(to != p && !on_diameter[to]){
find_far(to, v);
}
}
}
int main(){
do_not_disturb
// Reading the input
ll n, i;
cin >> n;
for(i = 0; i < n-1; i++){
ll x, y;
cin >> x >> y;
graph[x].pb(y);
graph[y].pb(x);
}
// Finding the two diameter ends
dist[1] = tmp = -1;
find_dends(1, 1);
d_first = ind;
for(i = 1; i <= n; i++)
dist[i] = 0;
dist[d_first] = tmp = -1;
find_dends(d_first, d_first);
d_second = ind;
for(i = 1; i <= n; i++)
dist[i] = 0;
// Finding vertices that lie on the diameter
vector <ll> vec;
find_d(d_first, vec);
for(auto to : d_ver) on_diameter[to]++;
// Finding for each vertex on the diameter the farthest node that doesn't lie on the diameter
vector <pll> candidates;
for(i = 1; i < sz(d_ver)-1; i++){
tmp = cnt = dist[d_ver[i]] = -1;
find_far(d_ver[i], d_ver[i]);
if(tmp){
candidates.pb(mp(ll(tmp+i)*ll(sz(d_ver)-i-1), cnt));
candidates.pb(mp(ll(tmp+(sz(d_ver)-i-1))*i, cnt));
candidates.pb(mp(tmp*2ll*ll(i), cnt*(cnt-1)/2ll));
candidates.pb(mp(tmp*2ll*ll(sz(d_ver)-i-1), cnt*(cnt-1)/2ll));
candidates.pb(mp(ll(sz(d_ver)-1)*tmp, cnt));
//farthest[d_ver[i]] = mp(max((tmp+i)*(sz(d_ver)-i-1), (tmp+(sz(d_ver)-i-1))*i), cnt);
}
else{
candidates.pb(mp(0, 1));
//farthest[d_ver[i]] = mp(0, 1);
}
}
//for(int i = 1; i < sz(d_ver)-1; i++){
// candidates.pb(farthest[d_ver[i]]);
//}
sort(all(candidates));
ll mx = 0, c = 0;
if(!sz(candidates) || candidates.back().first == 0){
cout << "0 1" << endl;
return 0;
}
mx = candidates.back().first;
c = candidates.back().second;
candidates.pop_back();
while(sz(candidates) && candidates.back().first == mx){
c += candidates.back().second;
candidates.pop_back();
}
cout << mx << ' ' << c;
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
12140 KB |
Output is correct |
2 |
Correct |
9 ms |
12140 KB |
Output is correct |
3 |
Correct |
8 ms |
12140 KB |
Output is correct |
4 |
Correct |
8 ms |
12140 KB |
Output is correct |
5 |
Correct |
9 ms |
12140 KB |
Output is correct |
6 |
Correct |
8 ms |
12140 KB |
Output is correct |
7 |
Incorrect |
9 ms |
12140 KB |
Output isn't correct |
8 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
12140 KB |
Output is correct |
2 |
Correct |
9 ms |
12140 KB |
Output is correct |
3 |
Correct |
8 ms |
12140 KB |
Output is correct |
4 |
Correct |
8 ms |
12140 KB |
Output is correct |
5 |
Correct |
9 ms |
12140 KB |
Output is correct |
6 |
Correct |
8 ms |
12140 KB |
Output is correct |
7 |
Incorrect |
9 ms |
12140 KB |
Output isn't correct |
8 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
12140 KB |
Output is correct |
2 |
Correct |
9 ms |
12140 KB |
Output is correct |
3 |
Correct |
8 ms |
12140 KB |
Output is correct |
4 |
Correct |
8 ms |
12140 KB |
Output is correct |
5 |
Correct |
9 ms |
12140 KB |
Output is correct |
6 |
Correct |
8 ms |
12140 KB |
Output is correct |
7 |
Incorrect |
9 ms |
12140 KB |
Output isn't correct |
8 |
Halted |
0 ms |
0 KB |
- |