This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
// Library solution for all S in O(N)
// Score: 100
#include "books.h"
#include <cstdlib>
#include <vector>
#include <map>
#include <iostream>
#include <cassert>
using namespace std;
using VI = vector<int>;
// Compute extend(l,r), initially assuming that the only
// cycles not checked yet are C[l] and C[r].
void extend(int &l, int &r, VI &C, VI &L, VI &R) {
// [ll, rr] is always the current extension,
// while only [l,r] was already checked for
// further overlapping cycles.
int ll = l, rr = r;
ll = min(ll,min(L[C[l]], L[C[r]]));
rr = max(rr,max(R[C[l]], R[C[r]]));
while(ll<l || r<rr) {
if(ll<l) {
l--;
ll = min(ll,L[C[l]]);
rr = max(rr,R[C[l]]);
} else {
r++;
ll = min(ll,L[C[r]]);
rr = max(rr,R[C[r]]);
}
}
}
// Compute the remaining cost of non-essentially connecting all the cycles
// if we already connected from S to [l,r] but need to go until we covered
// all of [target_l, target_r].
int connect(int l, int r, int target_l, int target_r, VI &C, VI &L, VI &R) {
int cost = 0;
// Repeat as long as [l,r] != [target_l, target_r]
do {
extend(l,r,C,L,R);
// Compute whether there is a next S-including cycle C_l to the left of l
// and its reaching cost c_l.
bool next_l = false; // Does C_l exist?
int cost_l = 0;
int l_l=l, r_l=r; // Temporary interval [l_l, r_l].
while(true) {
if(l_l<=target_l) break;
l_l--;
cost_l += 2;
extend(l_l,r_l,C,L,R);
if(r_l>r) { // Detect extension on the other side.
next_l = true;
break;
}
}
// Compute whether there is a next S-including cycle C_r to the right of r
// and its reaching cost c_r.
bool next_r = false; // Does C_r exist?
int cost_r = 0;
int l_r=l, r_r=r; // Temporary interval [l_r, r_r].
while(true) {
if(r_r>=target_r) break;
r_r++;
cost_r += 2;
extend(l_r,r_r,C,L,R);
if(l_r<l) { // Detect extension on the other side.
next_r = true;
break;
}
}
// Either there was an S-including cycle on both sides or on none.
assert(!(next_l ^ next_r));
if(next_l && next_r) { // We can extend on both sides.
cost += min(cost_l, cost_r); // Take the cheaper of both options.
} else {
// If there are no more S-including cycles, then we have to
// walk the necessary non-essential steps on both sides.
cost += cost_l + cost_r;
}
// New interval [l,r] = extend(C_l \cup C_r).
l = min(l_l, l_r);
r = max(r_l, r_r);
} while(target_l<l || r<target_r); // As long as Mina needs to explore more.
return cost;
}
long long minimum_walk(vector<int> order, int S) {
int N = order.size();
long long int dP = 0;
// For every slot i, determine its cycle C[i].
// For every cycle c, determine its interval [L[c], R[c]].
vector<int> C(N, -1), L(N), R(N);
int l = S, r = S; // Compute the range that Mina needs to visit.
int c = 0; // Number of cycles of Pi.
for(int i=0; i<N; i++) {
dP += abs(i-order[i]); // Compute d(pi).
if(C[i] == -1) { // New cycle detected.
L[c] = i; R[c] = i; // Initialize its leftmost and rightmost slot
int j = i;
do { // Loop over the cycle.
C[j] = c;
R[c] = max(R[c], j);
j = order[j];
} while (i != j);
if(i != order[i]) {
// If the cycle is non-trivial, it needs to be part of the
// range that Mina has to visit.
l = min(l,L[c]);
r = max(r,R[c]);
}
c++; // Finished processing the cycle containing slot i.
}
}
// Add up the number essential and non-essential steps needed.
return dP+connect(S, S, l, r, C, L, R);
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |