Submission #330914

#TimeUsernameProblemLanguageResultExecution timeMemory
330914caoashCoin Collecting (JOI19_ho_t4)C++17
100 / 100
78 ms5796 KiB
/* * Order of moving coins doesn't matter * * Manhattan distance always optimal? * - Assume we've assigned each coin to their destination. * - Then we move all by Manhattan distance * - start by assigning every coin to their closest destination * - assign N coins to N positions to minimize sum of manhattan distances * - solve for X and Y independently * - for 1 row version they only need to be on diff X's * - moves for Y is fixed? * - sum of a_y - 1 * - in 2 row version * - exactly 2 of each X * - N "top" and N "bottom" * - Y would be sum of abs(Y_i - 2) for tops + abs(Y_i - 1) for bottoms * - assign greedily * - given N values, find min sum of N of them abs(x - 2) + abs(x - 1) * - assign as many <= 1 as possible to abs(x - 1) * - assign as many > 1 as possible to abs(x - 2) * - move the remaining to wherever needed? * - once we assign them to their Y's, we can break them up into two instances of 1 row problem * - fairly convinced this is true? * - how to solve 1d problem * - assign leftmost to leftmost, second to second, etc * - for 2 row version we can do greedy over Y's * - then any moves to a different destination still follows Manhattan * - nvm its not true * - wtf its true * - kekw * - this constrains the problem to the box * - so like just do some greedy in it i guess */ #include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; using vl = vector<ll>; #define pb push_back #define all(x) begin(x), end(x) #define sz(x) (int)(x).size() #define lb lower_bound #define ub upper_bound using pi = pair<int,int>; #define f first #define s second #define mp make_pair const int MX = 200005; const int MOD = (int) (1e9 + 7); const ll INF = (ll) 1e18; int num[2][MX]; int main(){ #ifdef mikey freopen("a.in", "r", stdin); #endif ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; ll ans = 0; for (int i = 0; i < 2 * n; i++) { ll x, y; cin >> x >> y; ll go = x - 1; if (go < 0) ans += abs(go), go = 0; if (go >= n) ans += go - n + 1, go = n - 1; if (y <= 1) { ans += abs(y - 1); num[0][go]++; } else { ans += abs(y - 2); num[1][go]++; } } array<int, 2> pt; pt[0] = 0, pt[1] = 0; for (int i = 0; i < n; i++) { for (int j = 0; j < 2; j++) { int &need = pt[j]; while (need < i && num[j][i] > 1) { if (num[j][need] == 0) { num[j][i]--; num[j][need]++; // dbg("MOVE", i, j, need, j); ans += abs(i - need); } ++need; } } for (int j = 0; j < 2; j++) { int &need = pt[j ^ 1]; while (need < i && num[j][i] > 1) { if (num[j ^ 1][need] == 0) { num[j][i]--; num[j ^ 1][need]++; // dbg("MOVE", i, j, need, j ^ 1); ans += 1 + abs(i - need); } ++need; } if (num[j][i] > 1 && num[j ^ 1][i] == 0) { ++ans; num[j][i]--; num[j ^ 1][i]++; // dbg("MOVE", i, j, i, j ^ 1); } if (num[j][i] > 1 && i + 1 < n) { num[j][i + 1] += (num[j][i] - 1); ans += num[j][i] - 1; num[j][i] = 1; // dbg("MOVE", i, j, i + 1, j); } } } for (int j = 0; j < 2; j++) for (int i = 0; i < n; i++) { assert(num[j][i] == 1); } cout << ans << '\n'; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...