Submission #328193

# Submission time Handle Problem Language Result Execution time Memory
328193 2020-11-15T16:38:24 Z CaroLinda Land of the Rainbow Gold (APIO17_rainbow) C++14
12 / 100
1927 ms 590712 KB
#include "rainbow.h"
#include <bits/stdc++.h>

#define mk make_pair
#define pii pair<int,int>
#define pb push_back
#define ff first
#define ss second
#define all(x) x.begin(),x.end()
#define sz(x) (int)(x.size() )
#define ll long long

const int MAX = 2e5+10 ;

using namespace std ;

/*
I need two types of persistent segment trees:

* +1 in the opening and -1 in the closure
* +1 in everything
 
*/

struct persistentSeg
{

	//don't forget to create de dummy node

	vector<int> lef, rig , _sum ;
	int roots[MAX] ;
	
	int create()
	{
		lef.push_back(0) ;
		rig.push_back(0) ;
		_sum.push_back(0) ;

		return sz(lef) - 1 ;
	}

	int createAndCopy(int pos )
	{
		lef.push_back( lef[pos] ) ;
		rig.push_back( rig[pos] ) ;
		_sum.push_back( _sum[pos] ) ;

		return sz(lef) - 1 ;
	}

	int m(int l, int r ) { return (l+r)>>1 ; }

	int upd(int pos, int l, int r, int idx, int val )
	{
		int newPos = createAndCopy(pos) ;

		_sum[newPos] += val ;

		if( l== r ) return newPos ;

		if( idx <= m(l,r) ) 
		{
			int novo = upd(lef[newPos] , l , m(l,r) , idx, val ) ; 
			lef[newPos] = novo ;
		}
		else 
		{
			int novo = upd(rig[newPos] , m(l,r) + 1 , r , idx , val ) ; 
			rig[newPos] = novo ;			
		}

		return newPos ;

	}

	int qry(int pos, int l, int r, int beg, int en )
	{
		if( l > en || r < beg || !pos ) return 0 ;
		if( l >= beg && r <= en ) return _sum[pos] ;

		int al = qry(lef[pos] , l , m(l,r), beg, en  ) ;
		int ar = qry(rig[pos], m(l,r)+1, r, beg, en ) ;

		return al + ar ;
	}

} ;

struct Event
{

	//Type
	// 0 = opening
	// 1 = closure

	int r , c , type ;

	Event(int r = 0 , int c = 0 , int type = 0 ) : r(r)  ,c(c) , type(type) {} 
	
	bool operator < ( Event other ) const 
	{
		if( c != other.c ) return c < other.c ;
		return type < other.type ;
	}

	void print() { printf("%d %d %d\n", r, c , type ) ; }

} ;

int R, C ;
persistentSeg vertices[2] , edges[2] ;

void init(int _R, int _C, int sr, int sc, int M, char *S) 
{
	
	R = _R ;
	C = _C ;

	vector< pii > serpentPath(1, make_pair(sr, sc) ) ;

	for(int i = 0 ; i < M ; i++ ) 
	{
		if( S[i] == 'N' ) sr-- ;
		if( S[i] == 'E' ) sc++ ;
		if(S[i] == 'S' ) sr++ ;
		if(S[i] == 'W' ) sc-- ;

		serpentPath.push_back(make_pair(sr, sc) ) ;

	}
	
	vector<int> freq[R+1] ;
	for(auto p : serpentPath ) freq[ p.first ].push_back( p.second ) ;

	vector<Event> sweep ;

	for(int i = 1 ; i <= R ; i++ )
	{
		if( sz(freq[i] ) == 0 )
		{
			sweep.push_back( Event(i , 1 , 0 ) ) ;
			sweep.push_back( Event(i, C , 1 ) ) ;	
			continue ;
		}
		
		sort(all(freq[i] ) ) ;
		freq[i].push_back(C+1) ;

		int formerColumn = 0 ;

		for(auto e : freq[i] )
		{
			if( formerColumn+1 <= e-1 )
			{
				sweep.push_back(Event(i, formerColumn+1, 0 ) ) ;
				sweep.push_back( Event(i, e-1, 1 ) ) ;
			}
				
			formerColumn =  e ;
		}

	}


	sort(all(sweep ) ) ;

	set<int> currentRows ;

	vertices[0].create() ; vertices[0].roots[0] = 0 ;
	vertices[1].create() ; vertices[1].roots[0] = 0 ;
	edges[0].create() ; edges[0].roots[0] = 0 ;
	edges[1].create() ; edges[1].roots[0] = 0 ;

	for(int i = 1 , ptr=0 ; i <= C ; i++ )
	{
		vertices[0].roots[i] = vertices[0].roots[i-1] ;
		vertices[1].roots[i] = vertices[1].roots[i-1] ;
		edges[0].roots[i] = edges[0].roots[i-1] ;
		edges[1].roots[i] = edges[1].roots[i-1] ;

		while( ptr < sz(sweep ) && sweep[ptr].c == i )
		{

			vertices[1].roots[i] = vertices[1].upd( vertices[1].roots[i] , 1 , R , sweep[ptr].r , 1 ) ;

			if(sweep[ptr].type == 0 )
			{
				vertices[0].roots[i] = vertices[0].upd( vertices[0].roots[i] , 1 , R , sweep[ptr].r , 1 ) ; 
				currentRows.insert( sweep[ptr].r ) ;

				auto it = currentRows.find( sweep[ptr].r ) ;

				if( it != currentRows.begin() ) 
				{
					it-- ;

					if( *it == sweep[ptr].r-1)
					{
						edges[0].roots[i] = edges[0].upd( edges[0].roots[i] , 1 , R  , *it , 1 ) ;
						edges[1].roots[i] = edges[1].upd( edges[1].roots[i] , 1 , R  , *it , 1 ) ;
					}
					it++ ;
				}
				it++ ;
				if(it != currentRows.end() && *it == sweep[ptr].r+1 )
				{
					edges[0].roots[i] = edges[0].upd( edges[0].roots[i] , 1 , R  , sweep[ptr].r , 1 ) ;
					edges[1].roots[i] = edges[1].upd( edges[1].roots[i] , 1 , R  , sweep[ptr].r , 1 ) ;					
				}

			}
			else
			{
				vertices[0].roots[i] = vertices[0].upd( vertices[0].roots[i] , 1 , R , sweep[ptr].r , -1 ) ;

				auto it = currentRows.find( sweep[ptr].r ) ;

				if( it != currentRows.begin() ) 
				{
					it-- ;
					if(*it == sweep[ptr].r-1 )
					{
						edges[0].roots[i] = edges[0].upd( edges[0].roots[i] , 1 , R  , *it , -1 ) ;
						edges[1].roots[i] = edges[1].upd( edges[1].roots[i] , 1 , R  , *it , 1 ) ;
					}
					it++ ;
				}
				it++ ;
				if(it != currentRows.end() && *it == sweep[ptr].r+1 )
				{
					edges[0].roots[i] = edges[0].upd( edges[0].roots[i] , 1 , R  , sweep[ptr].r , -1 ) ;
					edges[1].roots[i] = edges[1].upd( edges[1].roots[i] , 1 , R  , sweep[ptr].r , 1 ) ;					
				}
				it-- ;

				currentRows.erase(it) ;

			}                  

			ptr++ ;
		} 

	}

}

int colour(int ar, int ac, int br, int bc) 
{
	
	//Count of vertices
	int z = vertices[0].qry(vertices[0].roots[bc], 1, R, ar, br ) ;
	int x = vertices[0].qry( vertices[0].roots[ac-1], 1 , R , ar , br ) ;
	int y = vertices[1].qry( vertices[1].roots[bc] , 1 , R , ar , br ) - vertices[1].qry( vertices[1].roots[ac-1] , 1 , R , ar , br ) ;

	y = (y - x - z )/2 ;

	int qtdVert = x + y + z ;

	//Count of edges
	br-- ;
	z = edges[0].qry(edges[0].roots[bc] , 1 , R , ar , br ) ;
	x = edges[0].qry( edges[0].roots[ac-1] , 1 , R , ar , br ) ;
	y = edges[1].qry( edges[1].roots[bc] , 1 , R , ar , br ) - edges[1].qry( edges[1].roots[ac-1] , 1 , R , ar , br ) ;
	y = (y-x-z)/2 ;

	int qtdEdges = x + y + z ;

	return qtdVert - qtdEdges ;

}

# Verdict Execution time Memory Grader output
1 Correct 2 ms 492 KB Output is correct
2 Correct 3 ms 876 KB Output is correct
3 Incorrect 2 ms 492 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1 ms 364 KB Output is correct
3 Correct 80 ms 7128 KB Output is correct
4 Correct 91 ms 7884 KB Output is correct
5 Correct 97 ms 9292 KB Output is correct
6 Correct 100 ms 9548 KB Output is correct
7 Correct 106 ms 11392 KB Output is correct
8 Correct 83 ms 7884 KB Output is correct
9 Correct 89 ms 8140 KB Output is correct
10 Correct 102 ms 9164 KB Output is correct
11 Correct 102 ms 9548 KB Output is correct
12 Correct 68 ms 7916 KB Output is correct
13 Correct 69 ms 8012 KB Output is correct
14 Correct 74 ms 9312 KB Output is correct
15 Correct 74 ms 9548 KB Output is correct
16 Correct 85 ms 7732 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 364 KB Output is correct
2 Correct 1141 ms 387304 KB Output is correct
3 Correct 1927 ms 590712 KB Output is correct
4 Correct 1636 ms 485032 KB Output is correct
5 Correct 1667 ms 485248 KB Output is correct
6 Correct 1181 ms 391904 KB Output is correct
7 Incorrect 1171 ms 392840 KB Output isn't correct
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 492 KB Output is correct
2 Correct 3 ms 876 KB Output is correct
3 Incorrect 2 ms 492 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 492 KB Output is correct
2 Correct 3 ms 876 KB Output is correct
3 Incorrect 2 ms 492 KB Output isn't correct
4 Halted 0 ms 0 KB -