Submission #319085

# Submission time Handle Problem Language Result Execution time Memory
319085 2020-11-03T22:50:39 Z AmineWeslati Koala Game (APIO17_koala) C++14
67 / 100
69 ms 552 KB
//Never stop trying
/*#pragma GCC target ("avx2")
#pragma GCC optimize ("Ofast")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")*/
#ifndef LOCAL
#include "koala.h"
#endif
#include "bits/stdc++.h"
using namespace std;
#define boost ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0)

typedef long long ll;
typedef string str;
typedef double db;
typedef long double ld;
typedef pair<int, int> pi;
#define fi first
#define se second
typedef vector<int> vi;
typedef vector<pi> vpi;
typedef vector<str> vs;
typedef vector<ld> vd;
#define pb push_back
#define eb emplace_back
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define endl "\n"

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)

const int MOD = 1e9 + 7; //998244353
const ll INF = 1e18;
const int MX = 2e5 + 10;
const int nx[4] = {0, 0, 1, -1}, ny[4] = {1, -1, 0, 0}; //right left down up

template<class T> using V = vector<T>;
template<class T> bool ckmin(T& a, const T& b) { return a > b ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; }

ll cdiv(ll a, ll b) { return a / b + ((a ^ b) > 0 && a % b); } // divide a by b rounded up
//constexpr int log2(int x) { return 31 - __builtin_clz(x); } // floor(log2(x))

mt19937 rng(chrono::system_clock::now().time_since_epoch().count());
//mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());

ll random(ll a, ll b){
    return a + rng() % (b - a + 1);
}

#ifndef LOCAL  
#define cerr if(false) cerr
#endif
#define dbg(x) cerr << #x << " : " << x << endl; 
#define dbgs(x,y) cerr << #x << " : " << x << " / " << #y << " : " << y << endl;
#define dbgv(v) cerr << #v << " : " << "[ "; for(auto it : v) cerr << it << ' '; cerr << ']' << endl;
#define here() cerr << "here" << endl;

void IO() {
#ifdef LOCAL
    freopen("input.txt", "r", stdin);
    freopen("output.txt", "w", stdout);
#endif
}

int P[100];
int N,W;

#ifdef LOCAL
void playRound(int *B, int *R) {
    int i, j;

    int S = 0;
    for (i=0;i<N;++i) {
        if ( !(B[i] >= 0 && B[i] <= W) ) {
            printf("Invalid query.\n");
            exit(0);
        }
        S += B[i];
    }
    if (S > W) {
        printf("Invalid query.\n");
        exit(0);
    }

    /*numQueries++;
    if (numQueries > maxQueries) {
        printf("Too many queries.\n");
        exit(0);
    }*/

    int cache[2][205];
    int num[2][205];
    char taken[105][205];

    for (i=0;i<205;++i) {
        cache[1][i] = 0;
        num[1][i] = 0;
    }

    for (i=0;i<N;++i) {
        int v = B[i]+1;
        int ii = i&1;
        int o = ii^1;
        for (j=0;j<=W;++j) {
            cache[ii][j] = cache[o][j];
            num[ii][j] = num[o][j];
            taken[i][j] = 0;
        }
        for (j=W;j>=v;--j) {
            int h = cache[o][j-v] + P[i];
            int hn = num[o][j-v] + 1;
            if (h > cache[ii][j] || (h == cache[ii][j] && hn > num[ii][j])) {
                cache[ii][j] = h;
                num[ii][j] = hn;
                taken[i][j] = 1;
            } else {
                taken[i][j] = 0;
            }
        }
    }

    int cur = W;
    for (i=N-1;i>=0;--i) {
        R[i] = taken[i][cur] ? (B[i] + 1) : 0;
        cur -= R[i];
    }
}

#endif

int B[100],R[100];

int minValue(int NN, int WW) {
	N=NN; W=WW;
	/*
	Place only one item in any element:
	-If there is an empty element: it is the MinValue 
	-Else the element in which I placed the item is the MinValue
	*/

	FOR(i,0,N) B[i]=0; 
	B[0]=1;

	playRound(B,R);

	FOR(i,0,N) if(R[i]==0) return i;
	return 0;
}

int maxValue(int NN, int WW) {
	N=NN; W=WW;

	vi chosen;
	for(int i=0; i<100; i+=10){
		FOR(j,0,N) B[j]=0;
		FOR(j,i,i+10) B[j]=10;

		playRound(B,R); 

		FOR(j,i,i+10){
			if(R[j]>10){
				chosen.pb(j);
			}	
		}
	}
	//dbgv(chosen);

	while(sz(chosen)>1){

		FOR(i,0,N) B[i]=0;
		FOR(i,0,min(sz(chosen),10)) B[chosen[i]]=10;

		playRound(B,R);
		vi nw;
		for(auto x: chosen) if(R[x]>10) nw.pb(x);
		FOR(i,10,sz(chosen)) nw.pb(chosen[i]);
		chosen.assign(all(nw));
	}

	return chosen[0];
    return 0;
}

int greaterValue(int NN, int WW) {
	N=NN; W=WW;
    /*
	BS([1,13]) on the number of elements put on both of those
	.if she choose both, make it bigger
	.if she choose no one, make it smaller
	.if she choose only one, that one is the biggest
	!!Choose = put on it more than I put
	*/

	int l=0,r=14;
	while(l<=r){
		int m=(l+r)/2;
		FOR(i,0,N) B[i]=0;
		B[0]=m; B[1]=m; 

		playRound(B,R);
		dbg(m);
		dbgv(R);

		if(R[0]>m && R[1]>m) l=m+1;
		else if(R[0]<=m && R[1]<=m) r=m-1;
		else if(R[0]>m) return 0;
		else return 1;
	}
	assert(0);
    return 0;
}

vi adj[101];

bool vis[101];
vi top;

void dfs(int u){
	vis[u]=true;
	for(auto v: adj[u]) if(!vis[v]) dfs(v);
	top.pb(u);
}

vi solve(vi v){
	if(sz(v)==1) return v;
	
	//dbgv(v);
	
	vi a,b;
	/*int l=0,r=13;
	while(l<=r){
		int val=(l+r)/2;
		FOR(i,0,N) B[i]=0;
		for(auto x: v) B[x]=val;

		playRound(B,R);
		a.clear(); b.clear();
		for(auto x: v){
			if(R[x]>1) b.pb(x);
			else if(R[x]==0) a.pb(x);
		}
		if(!a.empty() && !b.empty()) break;
		if(a.empty()) r=val-1;
		else l=val+1;
	}*/

	int val=0;
	do{
		val++;
		FOR(i,0,N) B[i]=0;
		for(auto x: v) B[x]=val;

		playRound(B,R);
		a.clear(); b.clear();
		for(auto x: v){
			if(R[x]>1) b.pb(x);
			else if(R[x]==0) a.pb(x);
		}
	}while(a.empty() || b.empty());
		

	

	vi left=solve(a),right=solve(b);

	for(auto x: right) left.pb(x);
	return left;
	
	
}

void allValues(int NN, int WW, int *PP) {
	N=NN; W=WW;

	/*vi v[14];
	FOR(i,0,N){
		int l=0,r=13;
		int ans;
		while(l<=r){
			int m=(l+r)/2;
			FOR(idx,0,N) B[idx]=0;
			B[i]=m; 

			playRound(B,R);

			if(R[i]>m){
				ans=m;
				l=m+1;
			}
			else r=m-1;
		}
		v[ans].pb(i);
	}

	//dbgv(v[12]);

	FOR(i,0,14) FOR(j,i+1,14){
		for(auto u: v[i]) for(auto k: v[j]) adj[u].pb(k);
	}

	FOR(i,1,14){
		vi vec=v[i];
		FOR(j,0,sz(vec)) FOR(k,j+1,sz(vec)){
			int u=vec[j],vv=vec[k];

			FOR(idx,0,N) vis[idx]=0;
			dfs(u); if(vis[vv]) continue;
			FOR(idx,0,N) vis[idx]=0;
			dfs(vv); if(vis[u]) continue;

			FOR(idx,0,N) B[idx]=0;
			B[u]=i; B[vv]=i;
			
			playRound(B,R);

			bool a=(R[u]>i),b=(R[vv]>i);
			if(a&&b) dbgs(u,vv);
			if(b){
				adj[u].pb(vv); 
			}
			else{
				adj[vv].pb(u);
			}
		}
	}

	top.clear();
	FOR(i,0,N) vis[i]=0;
	FOR(i,0,N) if(!vis[i]) dfs(i);
	reverse(all(top));
	//dbgv(top);
	FOR(i,0,N) PP[top[i]]=i+1;
    */

	vi v;
	FOR(i,0,N) v.pb(i);
	vi res=solve(v);
	FOR(i,0,N) PP[res[i]]=i+1;

}

#ifdef LOCAL

int main() {
    boost; IO();

    FOR(i,0,100) P[i]=i+1;

    //P[0]=100; P[99]=1;
    //cout << maxValue(100,100) << endl;

	//P[0]=20; P[1]=10; P[9]=1; P[19]=2;
	//dbgv(P);
    allValues(100,100,P);
    dbgv(P);
    
    return 0;
}

#endif



/* Careful!!!
    .Array bounds
    .Infinite loops
    .Uninitialized variables / empty containers
    .Multisets are shit

   Some insights:
    .Binary search
    .Graph representation
    .Write brute force code
    .Change your approach
*/
# Verdict Execution time Memory Grader output
1 Correct 6 ms 364 KB Output is correct
2 Correct 7 ms 492 KB Output is correct
3 Correct 6 ms 364 KB Output is correct
4 Correct 6 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 50 ms 364 KB Output is partially correct
2 Partially correct 51 ms 364 KB Output is partially correct
3 Partially correct 59 ms 364 KB Output is partially correct
4 Partially correct 51 ms 492 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Correct 63 ms 552 KB Output is correct
2 Correct 69 ms 484 KB Output is correct
3 Correct 66 ms 504 KB Output is correct
4 Correct 61 ms 524 KB Output is correct
5 Correct 61 ms 364 KB Output is correct
6 Correct 64 ms 364 KB Output is correct
7 Correct 61 ms 364 KB Output is correct
8 Correct 61 ms 484 KB Output is correct
9 Correct 69 ms 364 KB Output is correct
10 Correct 61 ms 364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 58 ms 364 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Partially correct 15 ms 364 KB Output is partially correct
2 Partially correct 15 ms 364 KB Output is partially correct
3 Partially correct 15 ms 364 KB Output is partially correct
4 Partially correct 15 ms 364 KB Output is partially correct
5 Partially correct 15 ms 364 KB Output is partially correct
6 Partially correct 15 ms 492 KB Output is partially correct
7 Partially correct 16 ms 512 KB Output is partially correct
8 Partially correct 15 ms 492 KB Output is partially correct
9 Partially correct 15 ms 364 KB Output is partially correct
10 Partially correct 15 ms 364 KB Output is partially correct
11 Partially correct 15 ms 364 KB Output is partially correct
12 Partially correct 15 ms 364 KB Output is partially correct
13 Partially correct 16 ms 492 KB Output is partially correct
14 Partially correct 16 ms 364 KB Output is partially correct
15 Partially correct 15 ms 364 KB Output is partially correct
16 Partially correct 15 ms 364 KB Output is partially correct
17 Partially correct 15 ms 360 KB Output is partially correct
18 Partially correct 15 ms 364 KB Output is partially correct
19 Partially correct 15 ms 364 KB Output is partially correct
20 Partially correct 15 ms 364 KB Output is partially correct
21 Partially correct 15 ms 364 KB Output is partially correct
22 Partially correct 15 ms 364 KB Output is partially correct
23 Partially correct 15 ms 364 KB Output is partially correct
24 Partially correct 16 ms 364 KB Output is partially correct
25 Partially correct 15 ms 364 KB Output is partially correct
26 Partially correct 15 ms 364 KB Output is partially correct
27 Partially correct 15 ms 364 KB Output is partially correct
28 Partially correct 15 ms 364 KB Output is partially correct
29 Partially correct 16 ms 364 KB Output is partially correct
30 Partially correct 15 ms 364 KB Output is partially correct
31 Partially correct 17 ms 364 KB Output is partially correct
32 Partially correct 15 ms 364 KB Output is partially correct
33 Partially correct 15 ms 364 KB Output is partially correct
34 Partially correct 15 ms 492 KB Output is partially correct
35 Partially correct 15 ms 364 KB Output is partially correct
36 Partially correct 15 ms 364 KB Output is partially correct
37 Partially correct 15 ms 364 KB Output is partially correct
38 Partially correct 17 ms 364 KB Output is partially correct
39 Partially correct 15 ms 492 KB Output is partially correct
40 Partially correct 17 ms 364 KB Output is partially correct