Submission #317817

# Submission time Handle Problem Language Result Execution time Memory
317817 2020-10-30T12:40:36 Z zaneyu Race (IOI11_race) C++14
100 / 100
594 ms 89396 KB
/*input
11 12
0 1 3
0 2 4
2 3 5
3 4 4
4 5 6
0 6 3
6 7 2
6 8 5
8 9 6
8 10 7
2


*/
#include "race.h"
#include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
 
#pragma GCC optimize("unroll-loops,no-stack-protector")
//order_of_key #of elements less than x
// find_by_order kth element
#define ll long long 
#define ld long double
#define pii pair<int,int>
#define piii pair<int,pii>
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> indexed_set;
#define f first
#define s second
#define pb push_back
#define REP(i,n) for(ll i=0;i<n;i++)
#define REP1(i,n) for(int i=1;i<=n;i++)
#define FILL(n,x) memset(n,x,sizeof(n))
#define ALL(_a) _a.begin(),_a.end()
#define sz(x) (int)x.size()
#define SORT_UNIQUE(c) (sort(c.begin(),c.end()), c.resize(distance(c.begin(),unique(c.begin(),c.end()))))
#define MP make_pair
const ll INF64=4e12;
const int INF=0x3f3f3f3f;
const ll MOD=1e9+7;
const ld PI=acos(-1);
const ld eps=1e-9;
#define lowb(x) x&(-x)
#define MNTO(x,y) x=min(x,(__typeof__(x))y)
#define MXTO(x,y) x=max(x,(__typeof__(x))y)
ll mult(ll a,ll b){
    return ((a%MOD)*(b%MOD))%MOD;
}
ll mypow(ll a,ll b){
    if(b<=0) return 1;
    ll res=1LL;
    while(b){
        if(b&1){
            res=(res*a)%MOD;
        }
        a=(a*a)%MOD;
        b>>=1;
    }
    return res;
}
const ll maxn=5e5+5;
const ll maxlg=__lg(maxn)+2;
ll pref[maxn];
int n,k;
int ans=INF;
int rt[maxn];
unordered_map<int,int> mp[maxn];
vector<pii> v[maxn];
pii off[maxn];
void dfs(int u,int p){
    rt[u]=u;
    mp[u][0]=0;
    for(auto xx:v[u]){
        int vv=xx.f;
        if(vv==p) continue;
        dfs(vv,u);
        int ru=rt[u],rv=rt[vv];
        off[rv].f+=xx.s;
        off[rv].s++;
        if(sz(mp[ru])<sz(mp[rv])) swap(ru,rv);
        for(auto x:mp[rv]){
            if(mp[ru].count(k-x.f-off[rv].f-off[ru].f)){
                MNTO(ans,mp[ru][k-x.f-off[rv].f-off[ru].f]+off[ru].s+off[rv].s+x.s);
            }
        }
        for(auto x:mp[rv]){
            if((!mp[ru].count(x.f+off[rv].f-off[ru].f) or mp[ru][x.f+off[rv].f-off[ru].f]>x.s+off[rv].s-off[ru].s)){
                mp[ru][x.f+off[rv].f-off[ru].f]=x.s+off[rv].s-off[ru].s;
            }
        }
        rt[u]=ru;
        mp[rv].clear();
    }
    /*cout<<u<<' '<<off[rt[u]].f<<' '<<off[rt[u]].s<<'\n';
    for(auto x:mp[rt[u]]) cout<<x.f<<' '<<x.s<<'\n';
    cout<<'\n';*/
}
int best_path(int N, int K, int H[][2], int L[]){
    n=N;
    k=K;
    REP(i,n-1){
        v[H[i][0]].pb({H[i][1],L[i]});
        v[H[i][1]].pb({H[i][0],L[i]});
    }
    dfs(0,-1);
    if(ans>n) return -1;
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 26 ms 39552 KB Output is correct
2 Correct 27 ms 39552 KB Output is correct
3 Correct 27 ms 39680 KB Output is correct
4 Correct 27 ms 39552 KB Output is correct
5 Correct 27 ms 39552 KB Output is correct
6 Correct 26 ms 39552 KB Output is correct
7 Correct 27 ms 39552 KB Output is correct
8 Correct 27 ms 39552 KB Output is correct
9 Correct 26 ms 39552 KB Output is correct
10 Correct 26 ms 39552 KB Output is correct
11 Correct 27 ms 39552 KB Output is correct
12 Correct 27 ms 39544 KB Output is correct
13 Correct 27 ms 39552 KB Output is correct
14 Correct 26 ms 39552 KB Output is correct
15 Correct 27 ms 39552 KB Output is correct
16 Correct 26 ms 39552 KB Output is correct
17 Correct 27 ms 39552 KB Output is correct
18 Correct 27 ms 39552 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 26 ms 39552 KB Output is correct
2 Correct 27 ms 39552 KB Output is correct
3 Correct 27 ms 39680 KB Output is correct
4 Correct 27 ms 39552 KB Output is correct
5 Correct 27 ms 39552 KB Output is correct
6 Correct 26 ms 39552 KB Output is correct
7 Correct 27 ms 39552 KB Output is correct
8 Correct 27 ms 39552 KB Output is correct
9 Correct 26 ms 39552 KB Output is correct
10 Correct 26 ms 39552 KB Output is correct
11 Correct 27 ms 39552 KB Output is correct
12 Correct 27 ms 39544 KB Output is correct
13 Correct 27 ms 39552 KB Output is correct
14 Correct 26 ms 39552 KB Output is correct
15 Correct 27 ms 39552 KB Output is correct
16 Correct 26 ms 39552 KB Output is correct
17 Correct 27 ms 39552 KB Output is correct
18 Correct 27 ms 39552 KB Output is correct
19 Correct 27 ms 39424 KB Output is correct
20 Correct 27 ms 39552 KB Output is correct
21 Correct 28 ms 39552 KB Output is correct
22 Correct 28 ms 39680 KB Output is correct
23 Correct 28 ms 39800 KB Output is correct
24 Correct 28 ms 39680 KB Output is correct
25 Correct 28 ms 39680 KB Output is correct
26 Correct 29 ms 39680 KB Output is correct
27 Correct 28 ms 39680 KB Output is correct
28 Correct 28 ms 39680 KB Output is correct
29 Correct 28 ms 39680 KB Output is correct
30 Correct 28 ms 39680 KB Output is correct
31 Correct 28 ms 39680 KB Output is correct
32 Correct 27 ms 39680 KB Output is correct
33 Correct 28 ms 39672 KB Output is correct
34 Correct 28 ms 39680 KB Output is correct
35 Correct 27 ms 39680 KB Output is correct
36 Correct 27 ms 39680 KB Output is correct
37 Correct 27 ms 39672 KB Output is correct
38 Correct 27 ms 39800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 26 ms 39552 KB Output is correct
2 Correct 27 ms 39552 KB Output is correct
3 Correct 27 ms 39680 KB Output is correct
4 Correct 27 ms 39552 KB Output is correct
5 Correct 27 ms 39552 KB Output is correct
6 Correct 26 ms 39552 KB Output is correct
7 Correct 27 ms 39552 KB Output is correct
8 Correct 27 ms 39552 KB Output is correct
9 Correct 26 ms 39552 KB Output is correct
10 Correct 26 ms 39552 KB Output is correct
11 Correct 27 ms 39552 KB Output is correct
12 Correct 27 ms 39544 KB Output is correct
13 Correct 27 ms 39552 KB Output is correct
14 Correct 26 ms 39552 KB Output is correct
15 Correct 27 ms 39552 KB Output is correct
16 Correct 26 ms 39552 KB Output is correct
17 Correct 27 ms 39552 KB Output is correct
18 Correct 27 ms 39552 KB Output is correct
19 Correct 167 ms 50188 KB Output is correct
20 Correct 174 ms 50040 KB Output is correct
21 Correct 167 ms 50040 KB Output is correct
22 Correct 169 ms 49912 KB Output is correct
23 Correct 198 ms 52856 KB Output is correct
24 Correct 172 ms 50808 KB Output is correct
25 Correct 160 ms 55928 KB Output is correct
26 Correct 108 ms 62968 KB Output is correct
27 Correct 262 ms 59256 KB Output is correct
28 Correct 393 ms 89396 KB Output is correct
29 Correct 389 ms 88008 KB Output is correct
30 Correct 259 ms 59420 KB Output is correct
31 Correct 264 ms 59300 KB Output is correct
32 Correct 345 ms 59640 KB Output is correct
33 Correct 332 ms 59512 KB Output is correct
34 Correct 521 ms 71236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 26 ms 39552 KB Output is correct
2 Correct 27 ms 39552 KB Output is correct
3 Correct 27 ms 39680 KB Output is correct
4 Correct 27 ms 39552 KB Output is correct
5 Correct 27 ms 39552 KB Output is correct
6 Correct 26 ms 39552 KB Output is correct
7 Correct 27 ms 39552 KB Output is correct
8 Correct 27 ms 39552 KB Output is correct
9 Correct 26 ms 39552 KB Output is correct
10 Correct 26 ms 39552 KB Output is correct
11 Correct 27 ms 39552 KB Output is correct
12 Correct 27 ms 39544 KB Output is correct
13 Correct 27 ms 39552 KB Output is correct
14 Correct 26 ms 39552 KB Output is correct
15 Correct 27 ms 39552 KB Output is correct
16 Correct 26 ms 39552 KB Output is correct
17 Correct 27 ms 39552 KB Output is correct
18 Correct 27 ms 39552 KB Output is correct
19 Correct 27 ms 39424 KB Output is correct
20 Correct 27 ms 39552 KB Output is correct
21 Correct 28 ms 39552 KB Output is correct
22 Correct 28 ms 39680 KB Output is correct
23 Correct 28 ms 39800 KB Output is correct
24 Correct 28 ms 39680 KB Output is correct
25 Correct 28 ms 39680 KB Output is correct
26 Correct 29 ms 39680 KB Output is correct
27 Correct 28 ms 39680 KB Output is correct
28 Correct 28 ms 39680 KB Output is correct
29 Correct 28 ms 39680 KB Output is correct
30 Correct 28 ms 39680 KB Output is correct
31 Correct 28 ms 39680 KB Output is correct
32 Correct 27 ms 39680 KB Output is correct
33 Correct 28 ms 39672 KB Output is correct
34 Correct 28 ms 39680 KB Output is correct
35 Correct 27 ms 39680 KB Output is correct
36 Correct 27 ms 39680 KB Output is correct
37 Correct 27 ms 39672 KB Output is correct
38 Correct 27 ms 39800 KB Output is correct
39 Correct 167 ms 50188 KB Output is correct
40 Correct 174 ms 50040 KB Output is correct
41 Correct 167 ms 50040 KB Output is correct
42 Correct 169 ms 49912 KB Output is correct
43 Correct 198 ms 52856 KB Output is correct
44 Correct 172 ms 50808 KB Output is correct
45 Correct 160 ms 55928 KB Output is correct
46 Correct 108 ms 62968 KB Output is correct
47 Correct 262 ms 59256 KB Output is correct
48 Correct 393 ms 89396 KB Output is correct
49 Correct 389 ms 88008 KB Output is correct
50 Correct 259 ms 59420 KB Output is correct
51 Correct 264 ms 59300 KB Output is correct
52 Correct 345 ms 59640 KB Output is correct
53 Correct 332 ms 59512 KB Output is correct
54 Correct 521 ms 71236 KB Output is correct
55 Correct 42 ms 40960 KB Output is correct
56 Correct 37 ms 40440 KB Output is correct
57 Correct 117 ms 49528 KB Output is correct
58 Correct 85 ms 48880 KB Output is correct
59 Correct 117 ms 64668 KB Output is correct
60 Correct 423 ms 88500 KB Output is correct
61 Correct 288 ms 60664 KB Output is correct
62 Correct 256 ms 59284 KB Output is correct
63 Correct 335 ms 59384 KB Output is correct
64 Correct 570 ms 71856 KB Output is correct
65 Correct 594 ms 74432 KB Output is correct
66 Correct 414 ms 84348 KB Output is correct
67 Correct 246 ms 58340 KB Output is correct
68 Correct 410 ms 67772 KB Output is correct
69 Correct 459 ms 70592 KB Output is correct
70 Correct 385 ms 66620 KB Output is correct