# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
314319 | Benq | Zoltan (COCI16_zoltan) | C++14 | 226 ms | 14408 KiB |
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using db = double;
using str = string; // yay python!
using pi = pair<int,int>;
using pl = pair<ll,ll>;
using pd = pair<db,db>;
using vi = vector<int>;
using vb = vector<bool>;
using vl = vector<ll>;
using vd = vector<db>;
using vs = vector<str>;
using vpi = vector<pi>;
using vpl = vector<pl>;
using vpd = vector<pd>;
#define tcT template<class T
#define tcTU tcT, class U
// ^ lol this makes everything look weird but I'll try it
tcT> using V = vector<T>;
tcT, size_t SZ> using AR = array<T,SZ>;
tcT> using PR = pair<T,T>;
// pairs
#define mp make_pair
#define f first
#define s second
// vectors
#define sz(x) (int)(x).size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend()
#define sor(x) sort(all(x))
#define rsz resize
#define ins insert
#define ft front()
#define bk back()
#define pf push_front
#define pb push_back
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
// loops
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)
const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5;
const ll INF = 1e18; // not too close to LLONG_MAX
const ld PI = acos((ld)-1);
const int dx[4] = {1,0,-1,0}, dy[4] = {0,1,0,-1}; // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
template<class T> using pqg = priority_queue<T,vector<T>,greater<T>>;
// helper funcs
constexpr int pct(int x) { return __builtin_popcount(x); } // # of bits set
constexpr int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x))
ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up
ll fdiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down
tcT> bool ckmin(T& a, const T& b) {
return b < a ? a = b, 1 : 0; } // set a = min(a,b)
tcT> bool ckmax(T& a, const T& b) {
return a < b ? a = b, 1 : 0; }
tcTU> T fstTrue(T lo, T hi, U f) {
hi ++; assert(lo <= hi); // assuming f is increasing
while (lo < hi) { // find first index such that f is true
T mid = lo+(hi-lo)/2;
f(mid) ? hi = mid : lo = mid+1;
}
return lo;
}
tcTU> T lstTrue(T lo, T hi, U f) {
lo --; assert(lo <= hi); // assuming f is decreasing
while (lo < hi) { // find first index such that f is true
T mid = lo+(hi-lo+1)/2;
f(mid) ? lo = mid : hi = mid-1;
}
return lo;
}
tcT> void remDup(vector<T>& v) { // sort and remove duplicates
sort(all(v)); v.erase(unique(all(v)),end(v)); }
tcTU> void erase(T& t, const U& u) { // don't erase
auto it = t.find(u); assert(it != end(t));
t.erase(u); } // element that doesn't exist from (multi)set
// INPUT
#define tcTUU tcT, class ...U
tcT> void re(complex<T>& c);
tcTU> void re(pair<T,U>& p);
tcT> void re(vector<T>& v);
tcT, size_t SZ> void re(AR<T,SZ>& a);
tcT> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
tcTUU> void re(T& t, U&... u) { re(t); re(u...); }
tcT> void re(complex<T>& c) { T a,b; re(a,b); c = {a,b}; }
tcTU> void re(pair<T,U>& p) { re(p.f,p.s); }
tcT> void re(vector<T>& x) { trav(a,x) re(a); }
tcT, size_t SZ> void re(AR<T,SZ>& x) { trav(a,x) re(a); }
// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
str ts(bool b) {
#ifdef LOCAL
return b ? "true" : "false";
#else
return ts((int)b);
#endif
}
tcT> str ts(complex<T> c) {
stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) {
str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
str res = ""; F0R(i,SZ) res += char('0'+b[i]);
return res; }
tcTU> str ts(pair<T,U> p);
tcT> str ts(T v) { // containers with begin(), end()
#ifdef LOCAL
bool fst = 1; str res = "{";
for (const auto& x: v) {
if (!fst) res += ", ";
fst = 0; res += ts(x);
}
res += "}"; return res;
#else
bool fst = 1; str res = "";
for (const auto& x: v) {
if (!fst) res += " ";
fst = 0; res += ts(x);
}
return res;
#endif
}
tcTU> str ts(pair<T,U> p) {
#ifdef LOCAL
return "("+ts(p.f)+", "+ts(p.s)+")";
#else
return ts(p.f)+" "+ts(p.s);
#endif
}
// OUTPUT
tcT> void pr(T x) { cout << ts(x); }
tcTUU> void pr(const T& t, const U&... u) {
pr(t); pr(u...); }
void ps() { pr("\n"); } // print w/ spaces
tcTUU> void ps(const T& t, const U&... u) {
pr(t); if (sizeof...(u)) pr(" "); ps(u...); }
// DEBUG
void DBG() { cerr << "]" << endl; }
tcTUU> void DBG(const T& t, const U&... u) {
cerr << ts(t); if (sizeof...(u)) cerr << ", ";
DBG(u...); }
#ifdef LOCAL // compile with -DLOCAL, chk -> fake assert
#define dbg(...) cerr << "Line(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#define chk(...) if (!(__VA_ARGS__)) cerr << "Line(" << __LINE__ << ") -> function(" \
<< __FUNCTION__ << ") -> CHK FAILED: (" << #__VA_ARGS__ << ")" << "\n", exit(0);
#else
#define dbg(...) 0
#define chk(...) 0
#endif
// FILE I/O
void setIn(str s) { freopen(s.c_str(),"r",stdin); }
void setOut(str s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { cin.tie(0)->sync_with_stdio(0); }
void setIO(str s = "") {
unsyncIO();
// cin.exceptions(cin.failbit);
// throws exception when do smth illegal
// ex. try to read letter into int
if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}
/**
* Description: modular arithmetic operations
* Source:
* KACTL
* https://codeforces.com/blog/entry/63903
* https://codeforces.com/contest/1261/submission/65632855 (tourist)
* https://codeforces.com/contest/1264/submission/66344993 (ksun)
* also see https://github.com/ecnerwala/cp-book/blob/master/src/modnum.hpp (ecnerwal)
* Verification:
* https://open.kattis.com/problems/modulararithmetic
*/
template<int MOD, int RT> struct mint {
static const int mod = MOD;
static constexpr mint rt() { return RT; } // primitive root for FFT
int v; explicit operator int() const { return v; } // explicit -> don't silently convert to int
mint() { v = 0; }
mint(ll _v) { v = int((-MOD < _v && _v < MOD) ? _v : _v % MOD);
if (v < 0) v += MOD; }
friend bool operator==(const mint& a, const mint& b) {
return a.v == b.v; }
friend bool operator!=(const mint& a, const mint& b) {
return !(a == b); }
friend bool operator<(const mint& a, const mint& b) {
return a.v < b.v; }
friend void re(mint& a) { ll x; re(x); a = mint(x); }
friend str ts(mint a) { return ts(a.v); }
mint& operator+=(const mint& m) {
if ((v += m.v) >= MOD) v -= MOD;
return *this; }
mint& operator-=(const mint& m) {
if ((v -= m.v) < 0) v += MOD;
return *this; }
mint& operator*=(const mint& m) {
v = (ll)v*m.v%MOD; return *this; }
mint& operator/=(const mint& m) { return (*this) *= inv(m); }
friend mint pow(mint a, ll p) {
mint ans = 1; assert(p >= 0);
for (; p; p /= 2, a *= a) if (p&1) ans *= a;
return ans; }
friend mint inv(const mint& a) { assert(a.v != 0);
return pow(a,MOD-2); }
mint operator-() const { return mint(-v); }
mint& operator++() { return *this += 1; }
mint& operator--() { return *this -= 1; }
friend mint operator+(mint a, const mint& b) { return a += b; }
friend mint operator-(mint a, const mint& b) { return a -= b; }
friend mint operator*(mint a, const mint& b) { return a *= b; }
friend mint operator/(mint a, const mint& b) { return a /= b; }
};
typedef mint<MOD,5> mi; // 5 is primitive root for both common mods
typedef vector<mi> vmi;
typedef pair<mi,mi> pmi;
typedef vector<pmi> vpmi;
vector<vmi> scmb; // small combinations
void genComb(int SZ) {
scmb.assign(SZ,vmi(SZ)); scmb[0][0] = 1;
FOR(i,1,SZ) F0R(j,i+1)
scmb[i][j] = scmb[i-1][j]+(j?scmb[i-1][j-1]:0);
}
/**
* Description: pre-compute factorial mod inverses,
* assumes $MOD$ is prime and $SZ < MOD$.
* Time: O(SZ)
* Source: KACTL
* Verification: https://dmoj.ca/problem/tle17c4p5
*/
vi invs, fac, ifac; // make sure to convert to LL before doing any multiplications ...
void genFac(int SZ) {
invs.rsz(SZ), fac.rsz(SZ), ifac.rsz(SZ);
invs[1] = fac[0] = ifac[0] = 1;
FOR(i,2,SZ) invs[i] = int(MOD-(ll)MOD/i*invs[MOD%i]%MOD);
FOR(i,1,SZ) {
fac[i] = int((ll)fac[i-1]*i%MOD);
ifac[i] = int((ll)ifac[i-1]*invs[i]%MOD);
}
}
/**
ll comb(int a, int b) {
if (a < b || b < 0) return 0;
return (ll)fac[a]*ifac[b]%MOD*ifac[a-b]%MOD;
}
*/
/**
* Description: 1D point update, range query where \texttt{comb} is
* any associative operation. If $N=2^p$ then \texttt{seg[1]==query(0,N-1)}.
* Time: O(\log N)
* Source:
* http://codeforces.com/blog/entry/18051
* KACTL
* Verification: SPOJ Fenwick
*/
template<class T> struct Seg { // comb(ID,b) = b
const T ID = {0,0};
T comb(T a, T b) {
if (a.f > b.f) return a;
if (a.f < b.f) return b;
return {a.f,a.s+b.s};
}
int n; vector<T> seg;
void init(int _n) { n = _n; seg.assign(2*n,ID); }
void pull(int p) { seg[p] = comb(seg[2*p],seg[2*p+1]); }
void upd(int p, T val) { // set val at position p
p += n;
seg[p] = comb(seg[p],val); for (p /= 2; p; p /= 2) pull(p); }
T query(int l, int r) { // sum on interval [l, r]
T res = {0,1};
for (l += n, r += n+1; l < r; l /= 2, r /= 2) {
if (l&1) res = comb(res,seg[l++]);
if (r&1) res = comb(seg[--r],res);
}
return res;
}
};
int N;
V<pair<int,mi>> solve(vi A) {
Seg<pair<int,mi>> S; S.init(N);
V<pair<int,mi>> res;
trav(t,A) {
res.pb(S.query(t+1,N-1)); res.bk.f ++;
S.upd(t,res.bk);
}
return res;
}
int main() {
setIO(); re(N);
genFac(N+1);
vi A(N); re(A);
reverse(all(A));
{
vi dis = A; remDup(dis);
trav(t,A) t = lb(all(dis),t)-begin(dis);
}
V<pair<int,mi>> x = solve(A);
trav(t,A) t = N-1-t;
V<pair<int,mi>> y = solve(A);
int ans = 0;
F0R(i,N) ckmax(ans,x[i].f+y[i].f-1);
mi tot = 0;
F0R(i,N) if (x[i].f+y[i].f-1 == ans) {
// if includes 1 -> N-1-(ans-1) remaining
// otherwise -> 1, N-1-(ans-1)
// if (i == N-1) tot += pow(mi(2),N-ans)*x[i].s*y[i].s;
// else
tot += pow(mi(2),N-ans)*x[i].s*y[i].s;
}
ps(ans,tot);
// ps(ans,tot*fac[N]*ifac[ans]*ifac[N-ans]);
// you should actually read the stuff at the bottom
}
/* stuff you should look for
* int overflow, array bounds
* special cases (n=1?)
* do smth instead of nothing and stay organized
* WRITE STUFF DOWN
* DON'T GET STUCK ON ONE APPROACH
*/
Compilation message (stderr)
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |