Submission #311168

#TimeUsernameProblemLanguageResultExecution timeMemory
311168FlowerOfSorrowOrganizing the Best Squad (FXCUP4_squad)C++17
100 / 100
936 ms55516 KiB
#include<bits/stdc++.h> #include<ext/pb_ds/assoc_container.hpp> #include<ext/pb_ds/tree_policy.hpp> #include<ext/rope> using namespace std; using namespace __gnu_pbds; using namespace __gnu_cxx; template<class L, class R> istream &operator>>(istream &in, pair<L, R> &p){ return in >> p.first >> p.second; } template<class Tuple, size_t ...Is> void read_tuple(istream &in, Tuple &t, index_sequence<Is...>){ ((in >> get<Is>(t)), ...); } template<class ...Args> istream &operator>>(istream &in, tuple<Args...> &t){ read_tuple(in, t, index_sequence_for<Args...>{}); return in; } template<class ...Args, template<class...> class T> istream &operator>>(enable_if_t<!is_same_v<T<Args...>, string>, istream> &in, T<Args...> &arr){ for(auto &x: arr) in >> x; return in; } template<class L, class R> ostream &operator<<(ostream &out, const pair<L, R> &p){ return out << "(" << p.first << ", " << p.second << ")"; } // template<class L, class R> ostream &operator<<(ostream &out, const pair<L, R> &p){ return out << p.first << " " << p.second << "\n"; } template<class Tuple, size_t ...Is> void print_tuple(ostream &out, const Tuple &t, index_sequence<Is...>){ ((out << (Is ? " " : "") << get<Is>(t)), ...); } template<class ...Args> ostream &operator<<(ostream &out, const tuple<Args...> &t){ print_tuple(out, t, index_sequence_for<Args...>{}); return out << "\n"; } template<class ...Args, template<class...> class T> ostream &operator<<(enable_if_t<!is_same_v<T<Args...>, string>, ostream> &out, const T<Args...> &arr){ for(auto &x: arr) out << x << " "; return out << "\n"; } mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); mt19937_64 rngll(chrono::steady_clock::now().time_since_epoch().count()); #define all(a) a.begin(), a.end() #define sz(a) (int)a.size() typedef long long ll; typedef vector<int> vi; typedef vector<ll> vl; typedef vector<double> vd; typedef vector<string> vs; typedef pair<int, int> pii; typedef pair<ll, ll> pll; typedef pair<int, ll> pil; typedef pair<ll, int> pli; typedef vector<pii> vpii; typedef vector<pil> vpil; typedef vector<pli> vpli; typedef vector<pll> vpll; template<class T> T ctmax(T &x, const T &y){ return x = max(x, y); } template<class T> T ctmin(T &x, const T &y){ return x = min(x, y); } template<class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; typedef tuple<int, int, int> tpl; typedef vector<tpl> vtpl; template<class T = long long> struct point{ T x, y; int ind; template<class U> point(const point<U> &otr): x(otr.x), y(otr.y), ind(otr.ind){ } template<class U = T, class V = T> point(U x = 0, V y = 0, int ind = -1): x(x), y(y), ind(ind){ } template<class U> explicit operator point<U>() const{ return point<U>(static_cast<U>(x), static_cast<U>(y)); } T operator*(const point &otr) const{ return x * otr.x + y * otr.y; } T operator^(const point &otr) const{ return x * otr.y - y * otr.x; } point operator+(const point &otr) const{ return {x + otr.x, y + otr.y}; } point &operator+=(const point &otr){ return *this = *this + otr; } point operator-(const point &otr) const{ return {x - otr.x, y - otr.y}; } point &operator-=(const point &otr){ return *this = *this - otr; } point operator-() const{ return {-x, -y}; } #define scalarop_l(op) friend point operator op(const T &c, const point &p){ return {c op p.x, c op p.y}; } scalarop_l(+) scalarop_l(-) scalarop_l(*) scalarop_l(/) #define scalarop_r(op) point operator op(const T &c) const{ return {x op c, y op c}; } scalarop_r(+) scalarop_r(-) scalarop_r(*) scalarop_r(/) #define scalarapply(op) point &operator op(const T &c){ return *this = *this op c; } scalarapply(+=) scalarapply(-=) scalarapply(*=) scalarapply(/=) #define compareop(op) bool operator op(const point &otr) const{ return tie(x, y) op tie(otr.x, otr.y); } compareop(>) compareop(<) compareop(>=) compareop(<=) compareop(==) compareop(!=) #undef scalarop_l #undef scalarop_r #undef scalarapply #undef compareop double norm() const{ return sqrt(x * x + y * y); } T squared_norm() const{ return x * x + y * y; } double arg() const{ return atan2(y, x); } // [-pi, pi] point<double> unit() const{ return point<double>(x, y) / norm(); } point perp() const{ return {-y, x}; } point<double> normal() const{ return perp().unit(); } point<double> rotate(const double &theta) const{ return point<double>(x * cos(theta) - y * sin(theta), x * sin(theta) + y * cos(theta)); } point reflect_x() const{ return {x, -y}; } point reflect_y() const{ return {-x, y}; } point reflect(const point &o) const{ return {2 * o.x - x, 2 * o.y - y}; } bool operator||(const point &otr) const{ return !(*this ^ otr); } }; template<class T> istream &operator>>(istream &in, point<T> &p){ return in >> p.x >> p.y; } template<class T> ostream &operator<<(ostream &out, const point<T> &p){ return out << "(" << p.x << ", " << p.y << ")"; } template<class T> double distance(const point<T> &p, const point<T> &q){ return (p - q).norm(); } template<class T> T squared_distance(const point<T> &p, const point<T> &q){ return (p - q).squared_norm(); } template<class T, class U, class V> T ori(const point<T> &p, const point<U> &q, const point<V> &r){ return (q - p) ^ (r - p); } template<class IT> auto doubled_signed_area(IT begin, IT end){ class iterator_traits<IT>::value_type s = 0, init = *begin; for(; begin != prev(end); ++ begin) s += *begin ^ *next(begin); return s + (*begin ^ init); } template<class T> bool is_sorted(const point<T> &origin, point<T> p, point<T> q, point<T> r){ p -= origin, q -= origin, r -= origin; T x = p ^ r, y = p ^ q, z = q ^ r; return x >= 0 && y >= 0 && z >= 0 || x < 0 && (y >= 0 || z >= 0); } template<class T, class IT> bool is_sorted(const point<T> &origin, IT begin, IT end){ for(int i = 0; i < end - begin - 2; ++ i) if(!is_sorted(origin, begin + i, begin + i + 1, begin + i + 2)) return false; return true; } template<class T = long long> struct line{ point<T> p, d; // p + d*t template<class U = T, class V = T> line(point<U> p = {0, 0}, point<V> q = {0, 0}, bool Two_Points = true): p(p), d(Two_Points ? q - p : q){ } template<class U> line(point<U> d): p(), d(static_cast<point<T>>(d)){ } line(T a, T b, T c): p(a ? -c / a : 0, !a && b ? -c / b : 0), d(-b, a){ } template<class U> explicit operator line<U>() const{ return line<U>(point<U>(p), point<U>(d), false); } point<T> q() const{ return p + d; } bool degen() const{ return d == point<T>(); } tuple<T, T, T> coef() const{ return {d.y, -d.x, d.perp() * p}; } // d.y (X - p.x) - d.x (Y - p.y) = 0 bool operator||(const line<T> &L) const{ return d || L.d; } }; template<class T> bool on_line(const point<T> &p, const line<T> &L){ if(L.degen()) return p == L.p; return (p - L.p) || L.d; } template<class T> bool on_ray(const point<T> &p, const line<T> &L){ if(L.degen()) return p == L.p; auto a = L.p - p, b = L.q() - p; return (a || b) && a * L.d <= 0; } template<class T> bool on_segment(const point<T> &p, const line<T> &L){ if(L.degen()) return p == L.p; auto a = L.p - p, b = L.q() - p; return (a || b) && a * b <= 0; } template<class T> double distance_to_line(const point<T> &p, const line<T> &L){ if(L.degen()) return distance(p, L.p); return abs((p - L.p) ^ L.d) / L.d.norm(); } template<class T> double distance_to_ray(const point<T> &p, const line<T> &L){ if((p - L.p) * L.d <= 0) return distance(p, L.p); return distance_to_line(p, L); } template<class T> double distance_to_segment(const point<T> &p, const line<T> &L){ if((p - L.p) * L.d <= 0) return distance(p, L.p); if((p - L.q()) * L.d >= 0) return distance(p, L.q()); return distance_to_line(p, L); } template<class T> point<double> projection(const point<T> &p, const line<T> &L){ return static_cast<point<double>>(L.p) + (L.degen() ? point<double>() : (p - L.p) * L.d / L.d.norm() * static_cast<point<double>>(L.d)); } template<class T> point<double> reflection(const point<T> &p, const line<T> &L){ return 2.0 * projection(p, L) - static_cast<point<double>>(p); } template<class T> point<double> closest_point_on_segment(const point<T> &p, const line<T> &L){ return (p - L.p) * L.d <= 0 ? static_cast<point<double>>(L.p) : ((p - L.q()) * L.d >= 0 ? static_cast<point<double>>(L.q()) : projection(p, L)); } template<int TYPE> struct EndpointChecker{ }; // For rays template<> struct EndpointChecker<0>{ template<class T> bool operator()(const T& a, const T& b) const{ return true; } }; // For ray // For closed end template<> struct EndpointChecker<1>{ template<class T> bool operator()(const T& a, const T& b) const{ return a <= b; } }; // For closed end // For open end template<> struct EndpointChecker<2>{ template<class T> bool operator()(const T& a, const T& b) const{ return a < b; } }; // For open end // Assumes parallel lines do not intersect template<int LA, int LB, int RA, int RB, class T> pair<bool, point<double>> intersect_no_parallel_overlap(const line<T> &L, const line<T> &M){ auto s = L.d ^ M.d; if(!s) return {false, point<double>()}; auto ls = (M.p - L.p) ^ M.d, rs = (M.p - L.p) ^ L.d; if(s < 0) s = -s, ls = -ls, rs = -rs; bool intersect = EndpointChecker<LA>()(decltype(ls)(0), ls) && EndpointChecker<LB>()(ls, s) && EndpointChecker<RA>()(decltype(rs)(0), rs) && EndpointChecker<RB>()(rs, s); return {intersect, static_cast<point<double>>(L.p) + 1.0 * ls / s * static_cast<point<double>>(L.d)}; } // Assumes parallel lines do not intersect template<class T> pair<bool, point<double>> intersect_closed_segments_no_parallel_overlap(const line<T> &L, const line<T> &M){ return intersect_no_parallel_overlap<1, 1, 1, 1>(L, M); } // Assumes nothing template<class T> pair<bool, line<double>> intersect_closed_segments(const line<T> &L, const line<T> &M){ auto s = L.d ^ M.d, ls = (M.p - L.p) ^ M.d; if(!s){ if(ls) return {false, line<double>()}; auto Lp = L.p, Lq = L.q(), Mp = M.p, Mq = M.q(); if(Lp > Lq) swap(Lp, Lq); if(Mp > Mq) swap(Mp, Mq); line<double> res(max(Lp, Mp), min(Lq, Mq)); return {res.d >= point<double>(), res}; } auto rs = (M.p - L.p) ^ L.d; if(s < 0) s = -s, ls = -ls, rs = -rs; bool intersect = 0 <= ls && ls <= s && 0 <= rs && rs <= s; return {intersect, line<double>(static_cast<point<double>>(L.p) + 1.0 * ls / s * static_cast<point<double>>(L.d), point<double>())}; } template<class T> double distance_between_rays(const line<T> &L, const line<T> &M){ if(L || M){ if(L.d * M.d >= 0 || (M.p - L.p) * M.d <= 0) return distance_to_line(L.p, M); else return distance(L.p, M.p); } else{ if(intersect_no_parallel_overlap<1, 0, 1, 0, long long>(L, M).first) return 0; else return min(distance_to_ray(L.p, M), distance_to_ray(M.p, L)); } } template<class T> double distance_between_segments(const line<T> &L, const line<T> &M){ if(intersect_closed_segments(L, M).first) return 0; return min({distance_to_segment(L.p, M), distance_to_segment(L.q(), M), distance_to_segment(M.p, L), distance_to_segment(M.q(), L)}); } template<class P> struct compare_by_angle{ const P origin; compare_by_angle(const P &origin = P()): origin(origin){ } bool operator()(const P &p, const P &q) const{ return ori(origin, p, q) > 0; } }; template<class It, class P> void sort_by_angle(It begin, It end, const P &origin){ begin = partition(begin, end, [&origin](const decltype(*begin) &point){ return point == origin; }); auto pivot = partition(begin, end, [&origin](const decltype(*begin) &point) { return point > origin; }); compare_by_angle<P> cmp(origin); sort(begin, pivot, cmp), sort(pivot, end, cmp); } /* Short Descriptions struct point{ T x, y; int ind; double norm() T squared_norm() double arg() point<double> unit() point perp() point<double> normal() point<double> rotate(double theta) point reflect_x() point reflect_y() point reflect(point o) bool operator||(point otr) }; double distance(point p, point q) T squared_distance(point p, point q) T ori(point p, point q, point r) auto doubled_signed_area(IT begin, IT end) bool is_sorted(point o, point p, point q, point r) bool is_sorted(point o, IT begin, IT end) struct line{ point p, d; // p + d*t line(point p = {0, 0}, point<V> q = {0, 0}, bool Two_Points = true) // two_points: pass through p and q // else: pass through p, slope q line(point<U> d) // pass through origin, slope d line(T a, T b, T c) // declare with ax + by + c = 0 point<T> q() bool degen() tuple<T, T, T> coef()// d.y (X - p.x) - d.x (Y - p.y) = 0 }; bool on_line(point, line) bool on_ray(point, line) bool on_segment(point, line) double distance_to_line(point, line) double distance_to_ray(point, line) double distance_to_segment(point, line) point<double> projection(point, line) point<double> reflection(point, line) point<double> closest_point_on_segment(point, line) // Endpoints: (0: rays), (1: closed), (2: open) // Assumes parallel lines do not intersect pair<bool, point<double>> intersect_no_parallel_overlap<EP1, EP2, EP3, EP4>(line, line) // Assumes parallel lines do not intersect pair<bool, point<double>> intersect_closed_segments_no_parallel_overlap(line, line) // Assumes nothing pair<bool, line<double>> intersect_closed_segments(line, line) double distance_between_rays(line, line) double distance_between_segments(line, line) struct compare_by_angle void sort_by_angle(It begin, It end, const P &origin) */ template<class T> struct convex_hull: pair<vector<point<T>>, vector<point<T>>>{ // (Lower, Upper) type {0: both, 1: lower, 2: upper} using pair<vector<point<T>>, vector<point<T>>>::first; using pair<vector<point<T>>, vector<point<T>>>::second; int type; convex_hull(vector<point<T>> arr = vector<point<T>>(), int type = 0, bool is_sorted = false): type(type){ if(!is_sorted) sort(arr.begin(), arr.end()), arr.erase(unique(arr.begin(), arr.end()), arr.end());; #define ADDP(C, cmp) while((int)C.size() > 1 && ori(C[(int)C.size() - 2], p, C.back()) cmp 0) C.pop_back(); C.push_back(p); for(auto &p: arr){ if(type < 2){ ADDP(first, >=) } if(!(type & 1)){ ADDP(second, <=) } } reverse(second.begin(), second.end()); } vector<point<T>> get_hull() const{ if(type) return type == 1 ? first : second; if(sz(first) <= 1) return first; vector<point<T>> res(first); res.insert(res.end(), ++ second.begin(), -- second.end()); return res; } int min_element(const point<T> &p) const{ assert(p.y >= 0 && !first.empty()); int low = 0, high = sz(first); while(high - low > 2){ int mid1 = (2 * low + high) / 3, mid2 = (low + 2 * high) / 3; p * first[mid1] >= p * first[mid2] ? low = mid1 : high = mid2; } int res = low; for(int i = low + 1; i < high; i ++) if(p * first[res] > p * first[i]) res = i; return res; } int max_element(const point<T> &p) const{ assert(p.y >= 0 && !second.empty()); int low = 0, high = sz(second); while(high - low > 2){ int mid1 = (2 * low + high) / 3, mid2 = (low + 2 * high) / 3; p * second[mid1] <= p * second[mid2] ? low = mid1 : high = mid2; } int res = low; for(int i = low + 1; i < high; ++ i) if(p * second[res] < p * second[i]) res = i; return res; } vector<point<T>> linearize() const{ if(type == 1) return first; if(type == 2){ vector<point<T>> res(second); reverse(res.begin(), res.end()); return res; } if(sz(first) <= 1) return first; vector<point<T>> res; res.reserve((int)first.size() + (int)second.size()); merge(all(first), ++ second.rbegin(), -- second.rend(), back_inserter(res)); return res; } convex_hull operator^(const convex_hull &otr) const{ vector<point<T>> temp, A = linearize(), B = otr.linearize(); temp.reserve((int)A.size() + (int)B.size()); merge(A.begin(), A.end(), B.begin(), B.end(), back_inserter(temp)); return {temp, type, true}; } pair<vector<point<T>>, vector<point<T>>> get_boundary() const{ vector<point<T>> L(first), R(second); for(int i = 1; i < (int)first.size(); ++ i) L[i] -= L[0]; for(int i = 1; i < (int)second.size(); ++ i) R[i] -= R[0]; return {L, R}; } convex_hull operator+(const convex_hull &otr) const{ assert(type == otr.type); compare_by_angle<class vector<point<T>>::value_type> cmp; convex_hull res; pair<vector<point<T>>, vector<point<T>>> A(this->get_boudnary()), B(otr.get_boudnary()); #define PROCESS(COND, X) \ if(COND && !A.X.empty() && !B.X.empty()){ \ res.X.reserve((int)A.X.size() + (int)B.X.size()); \ res.X.push_back(A.X.front() + B.X.front()); \ merge(A.X.begin() + 1, A.X.end(), B.X.begin() + 1, B.X.end(), back_inserter(res.X)); \ for(int i = 1; i < (int)res.X.size(); ++ i) res.X[i] += res.X[i - 1]; \ } PROCESS(type < 2, first) PROCESS(!(type & 1), second) return res; } }; int n, na, nb; vector<vector<convex_hull<long long>>> CH(2); // CH[i][j]: i=0(attack), i=1(defence), j=0(best), j=1(second best) void Init(vi A, vi D, vi P){ n = sz(A); vector<point<ll>> a(n), d(n); for(int i = 0; i < n; ++ i){ a[i] = {A[i], P[i]}; d[i] = {D[i], P[i]}; a[i].ind = d[i].ind = i; } for(int k = 0; k < 2; ++ k){ CH[k].emplace_back(k ? d : a, 2); vi used(n); for(auto &p: CH[k][0].second){ used[p.ind] = true; } vector<point<ll>> temp; for(int i = 0; i < n; ++ i){ if(!used[i]){ temp.push_back(k ? d[i] : a[i]); } } CH[k].emplace_back(temp, 2); } na = sz(CH[0][0].second), nb = sz(CH[1][0].second); } ll BestSquad(int X, int Y){ int ia = CH[0][0].max_element({X, Y}), ib = CH[1][0].max_element({X, Y}); auto eval = [&](int i, int j, int k){ return CH[i][j].second[k] * point(X, Y); }; if(CH[0][0].second[ia].ind == CH[1][0].second[ib].ind){ ll res = max(eval(0, 0, ia) + max(eval(1, 0, (ib - 1 + nb) % nb), eval(1, 0, (ib + 1) % nb)), max(eval(0, 0, (ia - 1 + na) % na), eval(0, 0, (ia + 1) % na)) + eval(1, 0, ib)); if(!CH[1][1].second.empty()){ ctmax(res, eval(0, 0, ia) + eval(1, 1, CH[1][1].max_element({X, Y}))); } if(!CH[0][1].second.empty()){ ctmax(res, eval(0, 1, CH[0][1].max_element({X, Y})) + eval(1, 0, ib)); } return res; } else{ return eval(0, 0, ia) + eval(1, 0, ib); } } /*int main(){ cin.tie(0)->sync_with_stdio(0); Init({3, 3, 5, 2, 1}, {2, 1, 1, 1, 4}, {5, 4, 3, 1, 2}); cout << BestSquad(2, 5) << "\n"; return 0; }*/ /* 5 3 2 5 3 1 4 5 1 3 2 1 1 1 4 2 1 2 5 */ //////////////////////////////////////////////////////////////////////////////////////// // // // Coded by Aeren // // // ////////////////////////////////////////////////////////////////////////////////////////
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...