Submission #311167

# Submission time Handle Problem Language Result Execution time Memory
311167 2020-10-09T14:35:00 Z FlowerOfSorrow Organizing the Best Squad (FXCUP4_squad) C++17
100 / 100
949 ms 55368 KB
#include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/tree_policy.hpp>
#include<ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
template<class L, class R> istream &operator>>(istream &in, pair<L, R> &p){ return in >> p.first >> p.second; }
template<class Tuple, size_t ...Is> void read_tuple(istream &in, Tuple &t, index_sequence<Is...>){ ((in >> get<Is>(t)), ...); }
template<class ...Args> istream &operator>>(istream &in, tuple<Args...> &t){ read_tuple(in, t, index_sequence_for<Args...>{}); return in; }
template<class ...Args, template<class...> class T> istream &operator>>(enable_if_t<!is_same_v<T<Args...>, string>, istream> &in, T<Args...> &arr){ for(auto &x: arr) in >> x; return in; }
template<class L, class R> ostream &operator<<(ostream &out, const pair<L, R> &p){ return out << "(" << p.first << ", " << p.second << ")"; }
// template<class L, class R> ostream &operator<<(ostream &out, const pair<L, R> &p){ return out << p.first << " " << p.second << "\n"; }
template<class Tuple, size_t ...Is> void print_tuple(ostream &out, const Tuple &t, index_sequence<Is...>){ ((out << (Is ? " " : "") << get<Is>(t)), ...); }
template<class ...Args> ostream &operator<<(ostream &out, const tuple<Args...> &t){ print_tuple(out, t, index_sequence_for<Args...>{}); return out << "\n"; }
template<class ...Args, template<class...> class T> ostream &operator<<(enable_if_t<!is_same_v<T<Args...>, string>, ostream> &out, const T<Args...> &arr){ for(auto &x: arr) out << x << " "; return out << "\n"; }
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
mt19937_64 rngll(chrono::steady_clock::now().time_since_epoch().count());
#define all(a) a.begin(), a.end()
#define sz(a) (int)a.size()
typedef long long ll;
typedef vector<int> vi; typedef vector<ll> vl; typedef vector<double> vd; typedef vector<string> vs;
typedef pair<int, int> pii; typedef pair<ll, ll> pll; typedef pair<int, ll> pil; typedef pair<ll, int> pli;
typedef vector<pii> vpii; typedef vector<pil> vpil; typedef vector<pli> vpli; typedef vector<pll> vpll;
template<class T> T ctmax(T &x, const T &y){ return x = max(x, y); }
template<class T> T ctmin(T &x, const T &y){ return x = min(x, y); }
template<class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef tuple<int, int, int> tpl; typedef vector<tpl> vtpl;
 
template<class T = long long> struct point{
	T x, y;
	int ind;
	template<class U> point(const point<U> &otr): x(otr.x), y(otr.y), ind(otr.ind){ }
	template<class U = T, class V = T> point(U x = 0, V y = 0, int ind = -1): x(x), y(y), ind(ind){ }
	template<class U> explicit operator point<U>() const{ return point<U>(static_cast<U>(x), static_cast<U>(y)); }
	T operator*(const point &otr) const{ return x * otr.x + y * otr.y; }
	T operator^(const point &otr) const{ return x * otr.y - y * otr.x; }
	point operator+(const point &otr) const{ return {x + otr.x, y + otr.y}; }
	point &operator+=(const point &otr){ return *this = *this + otr; }
	point operator-(const point &otr) const{ return {x - otr.x, y - otr.y}; }
	point &operator-=(const point &otr){ return *this = *this - otr; }
	point operator-() const{ return {-x, -y}; }
#define scalarop_l(op) friend point operator op(const T &c, const point &p){ return {c op p.x, c op p.y}; }
	scalarop_l(+) scalarop_l(-) scalarop_l(*) scalarop_l(/)
#define scalarop_r(op) point operator op(const T &c) const{ return {x op c, y op c}; }
	scalarop_r(+) scalarop_r(-) scalarop_r(*) scalarop_r(/)
#define scalarapply(op) point &operator op(const T &c){ return *this = *this op c; }
	scalarapply(+=) scalarapply(-=) scalarapply(*=) scalarapply(/=)
#define compareop(op) bool operator op(const point &otr) const{ return tie(x, y) op tie(otr.x, otr.y); }
	compareop(>) compareop(<) compareop(>=) compareop(<=) compareop(==) compareop(!=)
#undef scalarop_l
#undef scalarop_r
#undef scalarapply
#undef compareop
	double norm() const{ return sqrt(x * x + y * y); }
	T squared_norm() const{ return x * x + y * y; }
	double arg() const{ return atan2(y, x); } // [-pi, pi]
	point<double> unit() const{ return point<double>(x, y) / norm(); }
	point perp() const{ return {-y, x}; }
	point<double> normal() const{ return perp().unit(); }
	point<double> rotate(const double &theta) const{ return point<double>(x * cos(theta) - y * sin(theta), x * sin(theta) + y * cos(theta)); }
	point reflect_x() const{ return {x, -y}; }
	point reflect_y() const{ return {-x, y}; }
	point reflect(const point &o) const{ return {2 * o.x - x, 2 * o.y - y}; }
	bool operator||(const point &otr) const{ return !(*this ^ otr); }
};
template<class T> istream &operator>>(istream &in, point<T> &p){ return in >> p.x >> p.y; }
template<class T> ostream &operator<<(ostream &out, const point<T> &p){ return out << "(" << p.x << ", " << p.y << ")"; }
template<class T> double distance(const point<T> &p, const point<T> &q){ return (p - q).norm(); }
template<class T> T squared_distance(const point<T> &p, const point<T> &q){ return (p - q).squared_norm(); }
template<class T, class U, class V> T ori(const point<T> &p, const point<U> &q, const point<V> &r){ return (q - p) ^ (r - p); }
template<class IT> auto doubled_signed_area(IT begin, IT end){
	class iterator_traits<IT>::value_type s = 0, init = *begin;
	for(; begin != prev(end); ++ begin) s += *begin ^ *next(begin);
	return s + (*begin ^ init);
}
template<class T> bool is_sorted(const point<T> &origin, point<T> p, point<T> q, point<T> r){
	p -= origin, q -= origin, r -= origin;
	T x = p ^ r, y = p ^ q, z = q ^ r;
	return x >= 0 && y >= 0 && z >= 0 || x < 0 && (y >= 0 || z >= 0);
}
template<class T, class IT> bool is_sorted(const point<T> &origin, IT begin, IT end){
	for(int i = 0; i < end - begin - 2; ++ i) if(!is_sorted(origin, begin + i, begin + i + 1, begin + i + 2)) return false;
	return true;
}
template<class T = long long> struct line{
	point<T> p, d; // p + d*t
	template<class U = T, class V = T> line(point<U> p = {0, 0}, point<V> q = {0, 0}, bool Two_Points = true): p(p), d(Two_Points ? q - p : q){ }
	template<class U> line(point<U> d): p(), d(static_cast<point<T>>(d)){ }
	line(T a, T b, T c): p(a ? -c / a : 0, !a && b ? -c / b : 0), d(-b, a){ }
	template<class U> explicit operator line<U>() const{ return line<U>(point<U>(p), point<U>(d), false); }
	point<T> q() const{ return p + d; }
	bool degen() const{ return d == point<T>(); }
	tuple<T, T, T> coef() const{ return {d.y, -d.x, d.perp() * p}; } // d.y (X - p.x) - d.x (Y - p.y) = 0
	bool operator||(const line<T> &L) const{ return d || L.d; }
};
template<class T> bool on_line(const point<T> &p, const line<T> &L){
	if(L.degen()) return p == L.p;
	return (p - L.p) || L.d;
}
template<class T> bool on_ray(const point<T> &p, const line<T> &L){
	if(L.degen()) return p == L.p;
	auto a = L.p - p, b = L.q() - p;
	return (a || b) && a * L.d <= 0;
}
template<class T> bool on_segment(const point<T> &p, const line<T> &L){
	if(L.degen()) return p == L.p;
	auto a = L.p - p, b = L.q() - p;
	return (a || b) && a * b <= 0;
}
template<class T> double distance_to_line(const point<T> &p, const line<T> &L){
	if(L.degen()) return distance(p, L.p);
	return abs((p - L.p) ^ L.d) / L.d.norm();
}
template<class T> double distance_to_ray(const point<T> &p, const line<T> &L){
	if((p - L.p) * L.d <= 0) return distance(p, L.p);
	return distance_to_line(p, L);
}
template<class T> double distance_to_segment(const point<T> &p, const line<T> &L){
	if((p - L.p) * L.d <= 0) return distance(p, L.p);
	if((p - L.q()) * L.d >= 0) return distance(p, L.q());
	return distance_to_line(p, L);
}
template<class T> point<double> projection(const point<T> &p, const line<T> &L){ return static_cast<point<double>>(L.p) + (L.degen() ? point<double>() : (p - L.p) * L.d / L.d.norm() * static_cast<point<double>>(L.d)); }
template<class T> point<double> reflection(const point<T> &p, const line<T> &L){ return 2.0 * projection(p, L) - static_cast<point<double>>(p); }
template<class T> point<double> closest_point_on_segment(const point<T> &p, const line<T> &L){ return (p - L.p) * L.d <= 0 ? static_cast<point<double>>(L.p) : ((p - L.q()) * L.d >= 0 ? static_cast<point<double>>(L.q()) : projection(p, L)); }
template<int TYPE> struct EndpointChecker{ };
// For rays
template<> struct EndpointChecker<0>{ template<class T> bool operator()(const T& a, const T& b) const{ return true; } }; // For ray
// For closed end
template<> struct EndpointChecker<1>{ template<class T> bool operator()(const T& a, const T& b) const{ return a <= b; } }; // For closed end
// For open end
template<> struct EndpointChecker<2>{ template<class T> bool operator()(const T& a, const T& b) const{ return a < b; } }; // For open end
// Assumes parallel lines do not intersect
template<int LA, int LB, int RA, int RB, class T> pair<bool, point<double>> intersect_no_parallel_overlap(const line<T> &L, const line<T> &M){
	auto s = L.d ^ M.d;
	if(!s) return {false, point<double>()};
	auto ls = (M.p - L.p) ^ M.d, rs = (M.p - L.p) ^ L.d;
	if(s < 0) s = -s, ls = -ls, rs = -rs;
	bool intersect = EndpointChecker<LA>()(decltype(ls)(0), ls) && EndpointChecker<LB>()(ls, s) && EndpointChecker<RA>()(decltype(rs)(0), rs) && EndpointChecker<RB>()(rs, s);
	return {intersect, static_cast<point<double>>(L.p) + 1.0 * ls / s * static_cast<point<double>>(L.d)};
}
// Assumes parallel lines do not intersect
template<class T> pair<bool, point<double>> intersect_closed_segments_no_parallel_overlap(const line<T> &L, const line<T> &M){
	return intersect_no_parallel_overlap<1, 1, 1, 1>(L, M);
}
// Assumes nothing
template<class T> pair<bool, line<double>> intersect_closed_segments(const line<T> &L, const line<T> &M){
	auto s = L.d ^ M.d, ls = (M.p - L.p) ^ M.d;
	if(!s){
		if(ls) return {false, line<double>()};
		auto Lp = L.p, Lq = L.q(), Mp = M.p, Mq = M.q();
		if(Lp > Lq) swap(Lp, Lq);
		if(Mp > Mq) swap(Mp, Mq);
		line<double> res(max(Lp, Mp), min(Lq, Mq));
		return {res.d >= point<double>(), res};
	}
	auto rs = (M.p - L.p) ^ L.d;
	if(s < 0) s = -s, ls = -ls, rs = -rs;
	bool intersect = 0 <= ls && ls <= s && 0 <= rs && rs <= s;
	return {intersect, line<double>(static_cast<point<double>>(L.p) + 1.0 * ls / s * static_cast<point<double>>(L.d), point<double>())};
}
template<class T> double distance_between_rays(const line<T> &L, const line<T> &M){
	if(L || M){
		if(L.d * M.d >= 0 || (M.p - L.p) * M.d <= 0) return distance_to_line(L.p, M);
		else return distance(L.p, M.p);
	}
	else{
		if(intersect_no_parallel_overlap<1, 0, 1, 0, long long>(L, M).first) return 0;
		else return min(distance_to_ray(L.p, M), distance_to_ray(M.p, L));
	}
}
template<class T> double distance_between_segments(const line<T> &L, const line<T> &M){
	if(intersect_closed_segments(L, M).first) return 0;
	return min({distance_to_segment(L.p, M), distance_to_segment(L.q(), M), distance_to_segment(M.p, L), distance_to_segment(M.q(), L)});
}
template<class P> struct compare_by_angle{
	const P origin;
	compare_by_angle(const P &origin = P()): origin(origin){ }
	bool operator()(const P &p, const P &q) const{ return ori(origin, p, q) > 0; }
};
template<class It, class P> void sort_by_angle(It begin, It end, const P &origin){
	begin = partition(begin, end, [&origin](const decltype(*begin) &point){ return point == origin; });
	auto pivot = partition(begin, end, [&origin](const decltype(*begin) &point) { return point > origin; });
	compare_by_angle<P> cmp(origin);
	sort(begin, pivot, cmp), sort(pivot, end, cmp);
}
/* Short Descriptions
struct point{
	T x, y;
	int ind;
	double norm()
	T squared_norm()
	double arg()
	point<double> unit()
	point perp()
	point<double> normal()
	point<double> rotate(double theta)
	point reflect_x()
	point reflect_y()
	point reflect(point o)
	bool operator||(point otr)
};
double distance(point p, point q)
T squared_distance(point p, point q)
T ori(point p, point q, point r)
auto doubled_signed_area(IT begin, IT end)
bool is_sorted(point o, point p, point q, point r)
bool is_sorted(point o, IT begin, IT end)
struct line{
	point p, d; // p + d*t
	line(point p = {0, 0}, point<V> q = {0, 0}, bool Two_Points = true)
	// two_points: pass through p and q
	// else: pass through p, slope q
	line(point<U> d) // pass through origin, slope d
	line(T a, T b, T c) // declare with ax + by + c = 0
	point<T> q()
	bool degen()
	tuple<T, T, T> coef()// d.y (X - p.x) - d.x (Y - p.y) = 0
};
bool on_line(point, line)
bool on_ray(point, line)
bool on_segment(point, line)
double distance_to_line(point, line)
double distance_to_ray(point, line)
double distance_to_segment(point, line)
point<double> projection(point, line)
point<double> reflection(point, line)
point<double> closest_point_on_segment(point, line)
// Endpoints: (0: rays), (1: closed), (2: open)
// Assumes parallel lines do not intersect
pair<bool, point<double>> intersect_no_parallel_overlap<EP1, EP2, EP3, EP4>(line, line)
// Assumes parallel lines do not intersect
pair<bool, point<double>> intersect_closed_segments_no_parallel_overlap(line, line)
// Assumes nothing
pair<bool, line<double>> intersect_closed_segments(line, line)
double distance_between_rays(line, line)
double distance_between_segments(line, line)
struct compare_by_angle
void sort_by_angle(It begin, It end, const P &origin) */
 
template<class T>
struct convex_hull: pair<vector<point<T>>, vector<point<T>>>{ // (Lower, Upper) type {0: both, 1: lower, 2: upper}
	int type;
	convex_hull(vector<point<T>> arr = vector<point<T>>(), int type = 0, bool is_sorted = false): type(type){
		if(!is_sorted) sort(arr.begin(), arr.end()), arr.erase(unique(arr.begin(), arr.end()), arr.end());;
#define ADDP(C, cmp) while((int)C.size() > 1 && ori(C[(int)C.size() - 2], p, C.back()) cmp 0) C.pop_back(); C.push_back(p);
		for(auto &p: arr){
			if(type < 2){ ADDP(this->first, >=) }
			if(!(type & 1)){ ADDP(this->second, <=) }
		}
		reverse(this->second.begin(), this->second.end());
	}
	vector<point<T>> get_hull() const{
		if(type) return type == 1 ? this->first : this->second;
		if(sz(this->first) <= 1) return this->first;
		vector<point<T>> res(this->first);
		res.insert(res.end(), ++ this->second.begin(), -- this->second.end());
		return res;
	}
	int min_element(const point<T> &p) const{
		assert(p.y >= 0 && !this->first.empty());
		int low = 0, high = sz(this->first);
		while(high - low > 2){
			int mid1 = (2 * low + high) / 3, mid2 = (low + 2 * high) / 3;
			p * this->first[mid1] >= p * this->first[mid2] ? low = mid1 : high = mid2;
		}
		int res = low;
		for(int i = low + 1; i < high; i ++) if(p * this->first[res] > p * this->first[i]) res = i;
		return res;
	}
	int max_element(const point<T> &p) const{
		assert(p.y >= 0 && !this->second.empty());
		int low = 0, high = sz(this->second);
		while(high - low > 2){
			int mid1 = (2 * low + high) / 3, mid2 = (low + 2 * high) / 3;
			p * this->second[mid1] <= p * this->second[mid2] ? low = mid1 : high = mid2;
		}
		int res = low;
		for(int i = low + 1; i < high; ++ i) if(p * this->second[res] < p * this->second[i]) res = i;
		return res;
	}
	vector<point<T>> linearize() const{
		if(type == 1) return this->first;
		if(type == 2){ vector<point<T>> res(this->second); reverse(res.begin(), res.end()); return res; }
		if(sz(this->first) <= 1) return this->first;
		vector<point<T>> res;
		res.reserve((int)this->first.size() + (int)this->second.size());
		merge(all(this->first), ++ this->second.rbegin(), -- this->second.rend(), back_inserter(res));
		return res;
	}
	convex_hull operator^(const convex_hull &otr) const{
		vector<point<T>> temp, A = linearize(), B = otr.linearize();
		temp.reserve((int)A.size() + (int)B.size());
		merge(A.begin(), A.end(), B.begin(), B.end(), back_inserter(temp));
		return {temp, type, true};
	}
	pair<vector<point<T>>, vector<point<T>>> get_boundary() const{
		vector<point<T>> L(this->first), R(this->second);
		for(int i = 1; i < (int)this->first.size(); ++ i) L[i] -= L[0];
		for(int i = 1; i < (int)this->second.size(); ++ i) R[i] -= R[0];
		return {L, R};
	}
	convex_hull operator+(const convex_hull &otr) const{
		assert(type == otr.type);
		compare_by_angle<class vector<point<T>>::value_type> cmp;
		convex_hull res;
		pair<vector<point<T>>, vector<point<T>>> A(this->get_boudnary()), B(otr.get_boudnary());
#define PROCESS(COND, X) \
if(COND && !A.X.empty() && !B.X.empty()){ \
	res.X.reserve((int)A.X.size() + (int)B.X.size()); \
	res.X.push_back(A.X.front() + B.X.front()); \
	merge(A.X.begin() + 1, A.X.end(), B.X.begin() + 1, B.X.end(), back_inserter(res.X)); \
	for(int i = 1; i < (int)res.X.size(); ++ i) res.X[i] += res.X[i - 1]; \
}
		PROCESS(type < 2, first)
		PROCESS(!(type & 1), second)
		return res;
	}
};
 
int n, na, nb;
vector<vector<convex_hull<long long>>> CH(2); // CH[i][j]: i=0(attack), i=1(defence), j=0(best), j=1(second best)
void Init(vi A, vi D, vi P){
	n = sz(A);
	vector<point<ll>> a(n), d(n);
	for(int i = 0; i < n; ++ i){
		a[i] = {A[i], P[i]};
		d[i] = {D[i], P[i]};
		a[i].ind = d[i].ind = i;
	}
	for(int k = 0; k < 2; ++ k){
		CH[k].emplace_back(k ? d : a, 2);
		vi used(n);
		for(auto &p: CH[k][0].second){
			used[p.ind] = true;
		}
		vector<point<ll>> temp;
		for(int i = 0; i < n; ++ i){
			if(!used[i]){
				temp.push_back(k ? d[i] : a[i]);
			}
		}
		CH[k].emplace_back(temp, 2);
	}
	na = sz(CH[0][0].second), nb = sz(CH[1][0].second);
}
ll BestSquad(int X, int Y){
	int ia = CH[0][0].max_element({X, Y}), ib = CH[1][0].max_element({X, Y});
	auto eval = [&](int i, int j, int k){
		return CH[i][j].second[k] * point(X, Y);
	};
	if(CH[0][0].second[ia].ind == CH[1][0].second[ib].ind){
		ll res = max(eval(0, 0, ia) + max(eval(1, 0, (ib - 1 + nb) % nb), eval(1, 0, (ib + 1) % nb)), max(eval(0, 0, (ia - 1 + na) % na), eval(0, 0, (ia + 1) % na)) + eval(1, 0, ib));
		if(!CH[1][1].second.empty()){
			ctmax(res, eval(0, 0, ia) + eval(1, 1, CH[1][1].max_element({X, Y})));
		}
		if(!CH[0][1].second.empty()){
			ctmax(res, eval(0, 1, CH[0][1].max_element({X, Y})) + eval(1, 0, ib));
		}
		return res;
	}
	else{
		return eval(0, 0, ia) + eval(1, 0, ib);
	}
}
 
/*int main(){
	cin.tie(0)->sync_with_stdio(0);
	Init({3, 3, 5, 2, 1}, {2, 1, 1, 1, 4}, {5, 4, 3, 1, 2});
	cout << BestSquad(2, 5) << "\n";
	return 0;
}*/
 
/*
5
3 2 5
3 1 4
5 1 3
2 1 1
1 4 2
1
2 5
*/
 
////////////////////////////////////////////////////////////////////////////////////////
//                                                                                    //
//                                   Coded by Aeren                                   //
//                                                                                    //
////////////////////////////////////////////////////////////////////////////////////////
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 1 ms 512 KB Output is correct
3 Correct 331 ms 49896 KB Output is correct
4 Correct 330 ms 50020 KB Output is correct
5 Correct 16 ms 3880 KB Output is correct
6 Correct 258 ms 55368 KB Output is correct
7 Correct 261 ms 55308 KB Output is correct
8 Correct 260 ms 55364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 384 KB Output is correct
2 Correct 4 ms 764 KB Output is correct
3 Correct 488 ms 42856 KB Output is correct
4 Correct 491 ms 49896 KB Output is correct
5 Correct 20 ms 2268 KB Output is correct
6 Correct 644 ms 49420 KB Output is correct
7 Correct 642 ms 49480 KB Output is correct
8 Correct 628 ms 49476 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 1 ms 512 KB Output is correct
3 Correct 331 ms 49896 KB Output is correct
4 Correct 330 ms 50020 KB Output is correct
5 Correct 16 ms 3880 KB Output is correct
6 Correct 258 ms 55368 KB Output is correct
7 Correct 261 ms 55308 KB Output is correct
8 Correct 260 ms 55364 KB Output is correct
9 Correct 0 ms 384 KB Output is correct
10 Correct 4 ms 764 KB Output is correct
11 Correct 488 ms 42856 KB Output is correct
12 Correct 491 ms 49896 KB Output is correct
13 Correct 20 ms 2268 KB Output is correct
14 Correct 644 ms 49420 KB Output is correct
15 Correct 642 ms 49480 KB Output is correct
16 Correct 628 ms 49476 KB Output is correct
17 Correct 74 ms 2808 KB Output is correct
18 Correct 7 ms 820 KB Output is correct
19 Correct 514 ms 49896 KB Output is correct
20 Correct 524 ms 50036 KB Output is correct
21 Correct 30 ms 2504 KB Output is correct
22 Correct 919 ms 55368 KB Output is correct
23 Correct 949 ms 55368 KB Output is correct
24 Correct 931 ms 55368 KB Output is correct