Submission #301886

# Submission time Handle Problem Language Result Execution time Memory
301886 2020-09-18T09:12:12 Z ffao Carnival Tickets (IOI20_tickets) C++17
100 / 100
1347 ms 54468 KB
#ifndef LOCAL
#include "tickets.h"
#endif

#if 1
#ifdef LOCAL
#define _GLIBCXX_DEBUG 1
#define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 0
#endif

#include <bits/stdc++.h>
using namespace std;

#if 0
    #include <bits/extc++.h>
    using namespace __gnu_pbds;

    template<class T>
    using ordered_set = tree<T, null_type, less<T>, rb_tree_tag,
        tree_order_statistics_node_update>;
#endif

#if 0
    /* #include <sys/time.h>
    int main() {
	    timeval tp;
	    gettimeofday(&tp, 0);
	    C = (int)tp.tv_usec; // (less than modulo)
    */

    typedef uint64_t ull;
    static int C;

    template<int M, class B>
    struct A {
        int x; B b; A(int x=0) : x(x), b(x) {}
        A(int x, B b) : x(x), b(b) {}
        A operator+(A o){int y = x+o.x; return{y - (y>=M)*M, b+o.b};}
        A operator-(A o){int y = x-o.x; return{y + (y< 0)*M, b-o.b};}
        A operator*(A o) { return {(int)(1LL*x*o.x % M), b*o.b}; }
        explicit operator ull() { return x ^ (ull) b << 21; }
    };
    typedef A<1000000007, A<1000000009, unsigned>> H;

    struct HashInterval {
        vector<H> ha, pw;
        HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
            pw[0] = 1;
            rep(i,0,sz(str))
                ha[i+1] = ha[i] * C + str[i],
                pw[i+1] = pw[i] * C;
        }
        H hashInterval(int a, int b) { // hash [a, b)
            return ha[b] - ha[a] * pw[b - a];
        }
    };

    H hashString(string& s){H h{}; for(char c:s) h=h*C+c;return h;}
#endif

#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define sz(x) (int)(x).size()
#define all(x) begin(x), end(x)
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)

typedef string str;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;

template<typename T, typename U> T &ctmax(T &x, const U &y){ return x = max<T>(x, y); }
template<typename T, typename U> T &ctmin(T &x, const U &y){ return x = min<T>(x, y); }

mt19937 rng((unsigned)chrono::steady_clock::now().time_since_epoch().count());

#define ts to_string
str ts(char c) { return str(1,c); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
template<class A> str ts(complex<A> c) { stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) { str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);	res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) { str res = ""; F0R(i,SZ) res += char('0'+b[i]); return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { bool fst = 1; str res = "{"; for (const auto& x: v) {if (!fst) res += ", ";	fst = 0; res += ts(x);}	res += "}"; return res;}
template<class A, class B> str ts(pair<A,B> p) {return "("+ts(p.first)+", "+ts(p.second)+")"; }
 
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { pr(h); pr(t...); }
void ps() { pr("\n"); }
template<class H, class... T> void ps(const H& h, const T&... t) { pr(h); if (sizeof...(t)) pr(" "); ps(t...); }
 
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {cerr << ts(h); if (sizeof...(t)) cerr << ", ";	DBG(t...); }

int myrand(int l, int r) { return uniform_int_distribution(l, r)(rng); }

template<typename T, typename U> struct seg_tree_lazy {
    int S, H;
 
    T zero;
    std::vector<T> value;
 
    U noop;
    std::vector<bool> dirty;
    std::vector<U> prop;
 
    seg_tree_lazy<T, U>(int _S, T _zero = T(), U _noop = U());
    void set_leaves(std::vector<T> &leaves);
    void apply(int i, U &update);
    void rebuild(int i);
    void propagate(int i);
    void upd(int i, int j, U update);
    T query(int i, int j);
};

template<typename T, typename U>
seg_tree_lazy<T, U>::seg_tree_lazy(int _S, T _zero, U _noop) {
        zero = _zero, noop = _noop;
        for (S = 1, H = 1; S < _S; ) S *= 2, H++;
 
        value.resize(2*S, zero);
        dirty.resize(2*S, false);
        prop.resize(2*S, noop);
    }

template<typename T, typename U>
void seg_tree_lazy<T, U>::set_leaves(vector<T> &leaves) {
    copy(leaves.begin(), leaves.end(), value.begin() + S);

    for (int i = S - 1; i > 0; i--)
        value[i] = value[2 * i] + value[2 * i + 1];
}

template<typename T, typename U>
void seg_tree_lazy<T, U>::apply(int i, U &update) {
    value[i] = update(value[i]);
    if(i < S) {
        prop[i] = prop[i] + update;
        dirty[i] = true;
    }
}

template<typename T, typename U>
void seg_tree_lazy<T, U>::rebuild(int i) {
    for (int l = i/2; l; l /= 2) {
        T combined = value[2*l] + value[2*l+1];
        value[l] = prop[l](combined);
    }
}

template<typename T, typename U>
void seg_tree_lazy<T, U>::propagate(int i) {
    for (int h = H; h > 0; h--) {
        int l = i >> h;

        if (dirty[l]) {
            apply(2*l, prop[l]);
            apply(2*l+1, prop[l]);

            prop[l] = noop;
            dirty[l] = false;
        }
    }
}

template<typename T, typename U>
void seg_tree_lazy<T, U>::upd(int i, int j, U update) {
    i += S, j += S;
    propagate(i), propagate(j);

    for (int l = i, r = j; l <= r; l /= 2, r /= 2) {
        if((l&1) == 1) apply(l++, update);
        if((r&1) == 0) apply(r--, update);
    }

    rebuild(i), rebuild(j);
}

template<typename T, typename U>
T seg_tree_lazy<T, U>::query(int i, int j){
    i += S, j += S;
    propagate(i), propagate(j);

    T res_left = zero, res_right = zero;
    for(; i <= j; i /= 2, j /= 2){
        if((i&1) == 1) res_left = res_left + value[i++];
        if((j&1) == 0) res_right = value[j--] + res_right;
    }
    return res_left + res_right;
}

/*struct node {
    ll val = 0;

    node operator+(node ot) {
        ot.val = max(val, ot.val);
        return ot;
    }
};

struct update {
    ll val = 0;

    node operator()(node ot) {
        ot.val += val;
        return ot;
    }

    update operator+(update ot) {
        ot.val += val;
        return ot;
    }
};*/

#endif

#ifdef LOCAL
void allocate_tickets(std::vector<std::vector<int>> p) {
    dbg(p);
}
#endif

long long find_maximum(int k, std::vector<std::vector<int>> x) {
    int n = (int)x.size();
	int m = (int)x[0].size();
	std::vector<std::vector<int>> answer(n, vector<int>(m,-1));

    std::vector<int> taken(n);
    std::vector<int> used_right(n);
    std::vector<int> used_left(n);

    std::set<pair<long long, int>> changes;
    long long ans = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < k; j++) {
            ans -= x[i][j];
        }

        changes.insert({- x[i][m-1] - x[i][k-1], i});
    }

    for (int _ = 0; _ < k * n / 2; _++) {
        auto [val, idx] = *changes.begin();
        changes.erase(changes.begin());

        ans -= val;
        taken[idx]++;
        if (taken[idx] < k) {
            changes.insert({-x[idx][m-1-taken[idx]] - x[idx][k-1-taken[idx]], idx});
        }
    }

    for (int rnd = 0; rnd < k; rnd++) {
        vector<int> used_now(n);
        vector< pair<long long, int> > positives;
        for (int i = 0; i < n; i++) {
            if (used_right[i] != taken[i]) {
                positives.push_back({used_left[i] == k-taken[i] ? (ll)1e18 : x[i][m-1-used_right[i]], i});
            }
        }

        sort(all(positives));
        reverse(all(positives));

        for (int iii = 0; iii < n/2; iii++) {
            auto [val, idx] = positives[iii];
            answer[idx][m-1-used_right[idx]] = rnd;
            used_right[idx]++;
            used_now[idx]++;
        }

        positives.clear();
        for (int i = 0; i < n; i++) {
            if (!used_now[i] && used_left[i] != k - taken[i]) {
                positives.push_back({x[i][(k-taken[i])-1-used_left[i]], i});
            }
        }
        
        sort(all(positives));
        reverse(all(positives));

        for (int iii = 0; iii < n/2; iii++) {
            auto [val, idx] = positives[iii];
            answer[idx][(k-taken[idx])-1-used_left[idx]] = rnd;
            used_left[idx]++;
            used_now[idx]++;
        }
    }
	
	allocate_tickets(answer);
	return ans;
}

#ifdef LOCAL
int main() {
    // long long ans = find_maximum(2, {{5, 9}, {1, 4}, {3, 6}, {2, 7}});

    long long ans = find_maximum(4, {{5, 9, 13, 15}, {1, 4, 5, 7}, {3, 6, 23, 45}, {2, 7, 56, 78}});
    //find_maximum(2, {{0, 2, 5},{1, 1, 3}});
    dbg(ans);
    return 0;
}
#endif
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 256 KB Output is correct
4 Correct 2 ms 384 KB Output is correct
5 Correct 1 ms 384 KB Output is correct
6 Correct 2 ms 800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 256 KB Output is correct
4 Correct 3 ms 512 KB Output is correct
5 Correct 30 ms 2560 KB Output is correct
6 Correct 734 ms 51960 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 256 KB Output is correct
4 Correct 2 ms 512 KB Output is correct
5 Correct 26 ms 2432 KB Output is correct
6 Correct 646 ms 52600 KB Output is correct
7 Correct 707 ms 52856 KB Output is correct
8 Correct 7 ms 512 KB Output is correct
9 Correct 1 ms 256 KB Output is correct
10 Correct 1 ms 256 KB Output is correct
11 Correct 1 ms 256 KB Output is correct
12 Correct 9 ms 896 KB Output is correct
13 Correct 24 ms 2048 KB Output is correct
14 Correct 24 ms 2048 KB Output is correct
15 Correct 746 ms 53656 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 1 ms 256 KB Output is correct
3 Correct 1 ms 256 KB Output is correct
4 Correct 4 ms 488 KB Output is correct
5 Correct 51 ms 2424 KB Output is correct
6 Correct 8 ms 640 KB Output is correct
7 Correct 11 ms 1024 KB Output is correct
8 Correct 1347 ms 54440 KB Output is correct
9 Correct 1211 ms 50880 KB Output is correct
10 Correct 1219 ms 50876 KB Output is correct
11 Correct 1308 ms 54468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 4 ms 488 KB Output is correct
3 Correct 3 ms 512 KB Output is correct
4 Correct 3 ms 512 KB Output is correct
5 Correct 3 ms 512 KB Output is correct
6 Correct 4 ms 512 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 3 ms 512 KB Output is correct
10 Correct 4 ms 512 KB Output is correct
11 Correct 4 ms 512 KB Output is correct
12 Correct 4 ms 512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 4 ms 488 KB Output is correct
3 Correct 3 ms 512 KB Output is correct
4 Correct 3 ms 512 KB Output is correct
5 Correct 3 ms 512 KB Output is correct
6 Correct 4 ms 512 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 3 ms 512 KB Output is correct
10 Correct 4 ms 512 KB Output is correct
11 Correct 4 ms 512 KB Output is correct
12 Correct 4 ms 512 KB Output is correct
13 Correct 30 ms 2432 KB Output is correct
14 Correct 31 ms 2432 KB Output is correct
15 Correct 39 ms 2424 KB Output is correct
16 Correct 50 ms 2432 KB Output is correct
17 Correct 1 ms 384 KB Output is correct
18 Correct 3 ms 512 KB Output is correct
19 Correct 2 ms 384 KB Output is correct
20 Correct 37 ms 2424 KB Output is correct
21 Correct 40 ms 2424 KB Output is correct
22 Correct 42 ms 2424 KB Output is correct
23 Correct 44 ms 2424 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 256 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 256 KB Output is correct
4 Correct 2 ms 384 KB Output is correct
5 Correct 1 ms 384 KB Output is correct
6 Correct 2 ms 800 KB Output is correct
7 Correct 1 ms 256 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 1 ms 256 KB Output is correct
10 Correct 3 ms 512 KB Output is correct
11 Correct 30 ms 2560 KB Output is correct
12 Correct 734 ms 51960 KB Output is correct
13 Correct 1 ms 256 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 256 KB Output is correct
16 Correct 2 ms 512 KB Output is correct
17 Correct 26 ms 2432 KB Output is correct
18 Correct 646 ms 52600 KB Output is correct
19 Correct 707 ms 52856 KB Output is correct
20 Correct 7 ms 512 KB Output is correct
21 Correct 1 ms 256 KB Output is correct
22 Correct 1 ms 256 KB Output is correct
23 Correct 1 ms 256 KB Output is correct
24 Correct 9 ms 896 KB Output is correct
25 Correct 24 ms 2048 KB Output is correct
26 Correct 24 ms 2048 KB Output is correct
27 Correct 746 ms 53656 KB Output is correct
28 Correct 1 ms 256 KB Output is correct
29 Correct 1 ms 256 KB Output is correct
30 Correct 1 ms 256 KB Output is correct
31 Correct 4 ms 488 KB Output is correct
32 Correct 51 ms 2424 KB Output is correct
33 Correct 8 ms 640 KB Output is correct
34 Correct 11 ms 1024 KB Output is correct
35 Correct 1347 ms 54440 KB Output is correct
36 Correct 1211 ms 50880 KB Output is correct
37 Correct 1219 ms 50876 KB Output is correct
38 Correct 1308 ms 54468 KB Output is correct
39 Correct 1 ms 256 KB Output is correct
40 Correct 4 ms 488 KB Output is correct
41 Correct 3 ms 512 KB Output is correct
42 Correct 3 ms 512 KB Output is correct
43 Correct 3 ms 512 KB Output is correct
44 Correct 4 ms 512 KB Output is correct
45 Correct 1 ms 384 KB Output is correct
46 Correct 1 ms 384 KB Output is correct
47 Correct 3 ms 512 KB Output is correct
48 Correct 4 ms 512 KB Output is correct
49 Correct 4 ms 512 KB Output is correct
50 Correct 4 ms 512 KB Output is correct
51 Correct 30 ms 2432 KB Output is correct
52 Correct 31 ms 2432 KB Output is correct
53 Correct 39 ms 2424 KB Output is correct
54 Correct 50 ms 2432 KB Output is correct
55 Correct 1 ms 384 KB Output is correct
56 Correct 3 ms 512 KB Output is correct
57 Correct 2 ms 384 KB Output is correct
58 Correct 37 ms 2424 KB Output is correct
59 Correct 40 ms 2424 KB Output is correct
60 Correct 42 ms 2424 KB Output is correct
61 Correct 44 ms 2424 KB Output is correct
62 Correct 89 ms 6136 KB Output is correct
63 Correct 84 ms 6140 KB Output is correct
64 Correct 136 ms 6264 KB Output is correct
65 Correct 452 ms 23672 KB Output is correct
66 Correct 576 ms 24056 KB Output is correct
67 Correct 10 ms 1024 KB Output is correct
68 Correct 9 ms 640 KB Output is correct
69 Correct 744 ms 51512 KB Output is correct
70 Correct 1032 ms 52536 KB Output is correct
71 Correct 1332 ms 54352 KB Output is correct
72 Correct 1068 ms 52320 KB Output is correct
73 Correct 1270 ms 52220 KB Output is correct
74 Correct 807 ms 50808 KB Output is correct
75 Correct 1016 ms 50900 KB Output is correct