/*input
5 6 3
1 2
1 3
2 4
2 5
1
2
1
4
4
3
1
4
5
*/
#include <bits/stdc++.h>
using namespace std;
namespace my_template {
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll, ll> pl;
typedef pair<ld, ld> pd;
typedef vector<int> vi;
typedef vector<vi> vii;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<vl> vll;
typedef vector<pi> vpi;
typedef vector<vpi> vpii;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
typedef vector<pd> vpd;
typedef vector<bool> vb;
typedef vector<vb> vbb;
typedef std::string str;
typedef std::vector<str> vs;
#define x first
#define y second
#define debug(...) cout<<"["<<#__VA_ARGS__<<": "<<__VA_ARGS__<<"]\n"
const ld PI = 3.14159265358979323846264338327950288419716939937510582097494L;
template<typename T>
pair<T, T> operator+(const pair<T, T> &a, const pair<T, T> &b) { return pair<T, T>(a.x + b.x, a.y + b.y); }
template<typename T>
pair<T, T> operator-(const pair<T, T> &a, const pair<T, T> &b) { return pair<T, T>(a.x - b.x, a.y - b.y); }
template<typename T>
T operator*(const pair<T, T> &a, const pair<T, T> &b) { return (a.x * b.x + a.y * b.y); }
template<typename T>
T operator^(const pair<T, T> &a, const pair<T, T> &b) { return (a.x * b.y - a.y * b.x); }
template<typename T>
void print(vector<T> vec, string name = "") {
cout << name;
for (auto u : vec)
cout << u << ' ';
cout << '\n';
}
}
using namespace my_template;
const int MOD = 1000000007;
const ll INF = std::numeric_limits<ll>::max();
const int MX = 100101;
const int LG = 23;
struct FENWICK {
int N;
vi A;
FENWICK(int n) : N(n) {
A.resize(n + 1, 0);
}
void add(int i, int x) {
for (; i <= N; i += (i) & (-i))
A[i] += x;
}
int get(int i) {
int ret = 0;
for (; i > 0; i -= (i) & (-i))
ret += A[i];
return ret;
}
};
int N, M, Q;
vii edges(MX);
vpi visos;
vii p(LG, vi(MX, 0));
vi st(MX);
vi fn(MX);
vi ats(MX, 1);
vi perdaviau(MX, 0);
vi active(MX, 0);
FENWICK fen(1);
int piv = 1;
void dfs(int x, int par) {
st[x] = piv++;
p[0][x] = par;
for (int i = 1; i < LG; ++i)
{
p[i][x] = p[i - 1][p[i - 1][x]];
}
for (auto u : edges[x]) {
if (u == par) continue;
dfs(u, x);
}
fn[x] = piv;
}
int main() {
ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin >> N >> M >> Q;
for (int i = 0; i < N - 1; ++i)
{
int a, b;
cin >> a >> b;
visos.emplace_back(a, b);
edges[a].emplace_back(b);
edges[b].emplace_back(a);
}
dfs(1, 0);
fen = FENWICK(N + 2);
for (int i = 2; i <= N; ++i)
{
fen.add(st[i], 1);
fen.add(fn[i], -1);
}
auto kiek = [&](int x) {
return fen.get(x);
};
auto findRoot = [&](int x) -> int {
int ret = x;
for (int i = LG - 1; i >= 0; --i)
{
if (p[i][ret] and kiek(st[p[i][ret]]) == kiek(st[x])) {
ret = p[i][ret];
}
}
return ret;
};
for (int i = 0; i < M; ++i)
{
int ind; cin >> ind; ind--;
int x = visos[ind].x;
int y = visos[ind].y;
if (p[0][x] == y) swap(x, y);
// x
// y
if (active[ind]) {
ats[y] = perdaviau[y] = ats[findRoot(x)];
fen.add(st[y], 1);
fen.add(fn[y], -1);
} else {
ats[findRoot(x)] += ats[y] - perdaviau[y];
fen.add(st[y], -1);
fen.add(fn[y], 1);
}
active[ind] ^= 1;
}
for (int i = 0; i < Q; ++i)
{
int a;
cin >> a;
printf("%d\n", ats[findRoot(a)]);
}
}
/* Look for:
* special cases (n=1?)
* overflow (ll vs int?)
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* array bounds
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
9 ms |
13688 KB |
Output is correct |
2 |
Correct |
9 ms |
13688 KB |
Output is correct |
3 |
Correct |
9 ms |
13688 KB |
Output is correct |
4 |
Correct |
8 ms |
13688 KB |
Output is correct |
5 |
Correct |
9 ms |
13688 KB |
Output is correct |
6 |
Correct |
10 ms |
13688 KB |
Output is correct |
7 |
Correct |
23 ms |
14328 KB |
Output is correct |
8 |
Correct |
26 ms |
14456 KB |
Output is correct |
9 |
Correct |
22 ms |
14328 KB |
Output is correct |
10 |
Correct |
335 ms |
20588 KB |
Output is correct |
11 |
Correct |
338 ms |
20504 KB |
Output is correct |
12 |
Correct |
568 ms |
24940 KB |
Output is correct |
13 |
Correct |
112 ms |
20312 KB |
Output is correct |
14 |
Correct |
231 ms |
19820 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
109 ms |
22620 KB |
Output is correct |
2 |
Correct |
115 ms |
22460 KB |
Output is correct |
3 |
Correct |
135 ms |
24428 KB |
Output is correct |
4 |
Correct |
133 ms |
24428 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
9 ms |
13688 KB |
Output is correct |
2 |
Correct |
9 ms |
13688 KB |
Output is correct |
3 |
Correct |
9 ms |
13688 KB |
Output is correct |
4 |
Correct |
9 ms |
13688 KB |
Output is correct |
5 |
Correct |
9 ms |
13688 KB |
Output is correct |
6 |
Correct |
10 ms |
13816 KB |
Output is correct |
7 |
Correct |
32 ms |
14840 KB |
Output is correct |
8 |
Correct |
635 ms |
25836 KB |
Output is correct |
9 |
Correct |
605 ms |
25796 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
598 ms |
25836 KB |
Output is correct |
2 |
Correct |
210 ms |
25452 KB |
Output is correct |
3 |
Correct |
210 ms |
25580 KB |
Output is correct |
4 |
Correct |
216 ms |
25584 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
9 ms |
13688 KB |
Output is correct |
2 |
Correct |
9 ms |
13688 KB |
Output is correct |
3 |
Correct |
9 ms |
13688 KB |
Output is correct |
4 |
Correct |
9 ms |
13688 KB |
Output is correct |
5 |
Correct |
10 ms |
13816 KB |
Output is correct |
6 |
Correct |
33 ms |
14584 KB |
Output is correct |
7 |
Correct |
382 ms |
21484 KB |
Output is correct |
8 |
Correct |
605 ms |
25836 KB |
Output is correct |
9 |
Correct |
128 ms |
21484 KB |
Output is correct |
10 |
Correct |
255 ms |
21100 KB |
Output is correct |
11 |
Correct |
147 ms |
23780 KB |
Output is correct |
12 |
Correct |
147 ms |
23788 KB |
Output is correct |
13 |
Correct |
213 ms |
25580 KB |
Output is correct |