Submission #300889

# Submission time Handle Problem Language Result Execution time Memory
300889 2020-09-17T14:48:46 Z Mohammad_Yasser timeismoney (balkan11_timeismoney) C++17
100 / 100
1138 ms 896 KB
#ifndef Local
#pragma GCC optimize("Ofast,no-stack-protector")
#pragma GCC target("sse4,sse4.2,popcnt,abm,mmx,avx")
#endif
#include <bits/stdc++.h>

using namespace std;

#define popCnt(x) (__builtin_popcountll(x))
#define sz(x) ((int)(x.size()))
#define all(v) begin(v), end(v)
#define rall(v) rbegin(v), rend(v)
typedef long long Long;
typedef double Double;

template <class U, class V>
istream& operator>>(istream& is, pair<U, V>& p) {
  is >> p.first >> p.second;
  return is;
}
template <class T>
istream& operator>>(istream& is, vector<T>& v) {
  for (auto& x : v) {
    is >> x;
  }
  return is;
}

template <class T>
ostream& operator<<(ostream& os, vector<T>& v) {
  for (auto& x : v) {
    os << x << " ";
  }
  return os;
}

const Double EPS = 1e-10;

enum Relation { LESS_THAN, EQUAL, GREATER_THAN };

bool areEqual(Double x, Double y, Double eps = EPS) {
  auto diff = abs(x - y);
  x = abs(x), y = abs(y);
  if (diff <= eps) return true;
  if (min(x, y) <= eps) return false;
  return diff <= eps * max(x, y);
}

bool isZero(Double x, Double eps = EPS) { return abs(x) <= eps; }
bool isZero(Long x) { return x == 0; }

int compareDoubles(Double x, Double y, Double eps = EPS) {
  if (areEqual(x, y, eps)) return Relation::EQUAL;
  if (x < y) return Relation::LESS_THAN;
  return Relation::GREATER_THAN;
}

template <typename T = Double>
struct Point {
  typedef Point P;
  const static P Invalid;
  const static P Origin;

  T x = 0, y = 0;
  Point(T x, T y) : x(x), y(y) {}
  Point() {}
  pair<T, T> to_pair() const { return make_pair(x, y); }
  Point operator+(const Point& p) const { return Point{x + p.x, y + p.y}; }
  Point operator-(const Point& p) const { return Point{x - p.x, y - p.y}; }
  Point operator*(T c) const { return Point(x * c, y * c); }
  Point operator/(T c) const { return Point(x / c, y / c); }
  bool operator<(const Point& p) const {
    return (*this) != p && to_pair() < p.to_pair();
  }
  bool operator>(const Point& p) const { return (*this) != p && !(*this < p); }
  bool operator==(const Point& p) const {
    return isZero(this->x - p.x) && isZero(this->y - p.y);
  }
  bool operator!=(const Point& p) const { return !(*this == p); }
  T cross(const P& p) const { return x * p.y - y * p.x; }
  T cross(const P& a, const P& b) const { return (a - *this).cross(b - *this); }
  T dot(const P& p) const { return x * p.x + y * p.y; }
  P midPoint(const P& p) const { return ((*this) + p) / 2; }
  P getVector(const P& p) const { return p - (*this); }
  T dist2(const P& p) const { return getVector(p).dist2(); }
  T dist2() const { return (*this).dot(*this); }
  Double dist(const P& p) const { return sqrt(dist2(p)); }
  Double dist() const { return sqrt(dist2()); }
  P rotateCCW90() const { return P(-y, x); }
  friend istream& operator>>(istream& is, P& p) { return is >> p.x >> p.y; }

  friend ostream& operator<<(ostream& os, const P& p) {
    return os << p.x << " " << p.y;
  }
};

template <typename T>
const Point<T> Point<T>::Invalid = Point<T>(numeric_limits<T>::max(),
                                            numeric_limits<T>::max());
template <typename T>
const Point<T> Point<T>::Origin = Point<T>(0, 0);

typedef Point<Double> P;

bool areCollinear(const P& a, const P& b, const P& c) {
  return isZero(a.getVector(b).cross(c.getVector(b)));
}

const int N = 200;

struct DSU {
  int parent[N];
  void init() {
    for (int i = 0; i < N; ++i) {
      parent[i] = i;
    }
  }
  int getRoot(int x) {
    if (parent[x] == x) return x;
    return parent[x] = getRoot(parent[x]);
  }
  bool join(int x, int y) {
    x = getRoot(x);
    y = getRoot(y);
    if (x == y) return false;
    parent[x] = y;
    return true;
  }
};

struct Edge {
  int u, v;
  Double t, c;
  bool operator<(const Edge& other) const { return t + c < other.t + other.c; }
};

vector<Edge> edges;

struct Solution {
  uint t = 0, c = 0;
  vector<pair<int, int>> edges;
  P getP() const { return P(t, c); }
  uint score() const { return t * c; }
  bool operator<(const Solution& other) const {
    return score() < other.score();
  }
  bool operator==(const Solution& other) const {
    return t == other.t && c == other.c;
  }
};

Solution mst(const P& coeff) {
  auto edges = ::edges;
  for (auto& edge : edges) {
    edge.t *= coeff.x;
    edge.c *= coeff.y;
  }
  sort(all(edges));
  static DSU dsu;
  dsu.init();
  Solution sol;
  for (auto& edge : edges) {
    if (dsu.join(edge.u, edge.v)) {
      sol.t += round(edge.t / coeff.x), sol.c += round(edge.c / coeff.y);
      sol.edges.emplace_back(edge.u, edge.v);
    }
  }
  return sol;
}
Solution best;
void solve(const P& left_v, const P& right_v, const Solution& left_sol,
           const Solution& right_sol) {
  P mid = (left_sol.getP() - right_sol.getP()).rotateCCW90();

  auto sol = mst(mid);
  best = min(best, sol);
  if (areCollinear(left_sol.getP(), sol.getP(), right_sol.getP())) return;
  solve(left_v, mid, left_sol, sol);
  solve(mid, right_v, sol, right_sol);
}

int main() {
  ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
#ifdef Local
  freopen("test.in", "r", stdin);
#else
#define endl '\n'
#endif

  int n, m;
  cin >> n >> m;

  edges.resize(m);
  for (auto& edge : edges) {
    cin >> edge.u >> edge.v >> edge.t >> edge.c;
  }

  P left_v(1e-7, 1);
  P right_v(1, 1e-7);
  auto left_sol = mst(left_v);
  auto right_sol = mst(right_v);
  best = min(left_sol, right_sol);
  if (!(left_sol == right_sol)) solve(left_v, right_v, left_sol, right_sol);
  cout << best.t << " " << best.c << endl;
  for (auto [u, v] : best.edges) {
    cout << u << " " << v << endl;
  }

  return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 1 ms 384 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 2 ms 384 KB Output is correct
8 Correct 16 ms 788 KB Output is correct
9 Correct 0 ms 384 KB Output is correct
10 Correct 1 ms 384 KB Output is correct
11 Correct 0 ms 384 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 384 KB Output is correct
14 Correct 8 ms 384 KB Output is correct
15 Correct 6 ms 384 KB Output is correct
16 Correct 137 ms 504 KB Output is correct
17 Correct 137 ms 512 KB Output is correct
18 Correct 131 ms 512 KB Output is correct
19 Correct 1103 ms 892 KB Output is correct
20 Correct 1138 ms 896 KB Output is correct