#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef vector<int> vi;
typedef pair<int, int> pi;
#define debug(x) cerr << #x << ": " << x << endl
#define debug2(x, y) debug(x), debug(y)
#define repn(i, a, b) for(int i = (int)(a); i < (int)(b); i++)
#define rep(i, a) for(int i = 0; i < (int)(a); i++)
#define all(v) v.begin(), v.end()
#define mp make_pair
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define fi first
#define se second
#define sq(x) ((x) * (x))
const int mxN = 2005;
template<class T> T gcd(T a, T b){ return ((b == 0) ? a : gcd(b, a % b)); }
int h, w;
int g[mxN][mxN];
int mn[mxN][mxN], mn1[mxN][mxN];
int mx[mxN][mxN], mx1[mxN][mxN];
pi bst;
int solve(){
//compute all the mins and maxes
//mn and mx are for top
//mn1 and mx1 are for bottom
rep(j, w){
mn[0][j] = g[0][j];
mx[0][j] = g[0][j];
repn(i, 1, h){
mn[i][j] = min(mn[i - 1][j], g[i][j]);
mx[i][j] = max(mx[i - 1][j], g[i][j]);
}
}
rep(j, w){
mn1[h - 1][j] = g[h - 1][j];
mx1[h - 1][j] = g[h - 1][j];
for(int i = h - 2; i >= 0; i--){
mn1[i][j] = min(mn1[i + 1][j], g[i][j]);
mx1[i][j] = max(mx1[i + 1][j], g[i][j]);
}
}
int ans = 2e9;
vi lev(w, h);
rep(i, bst.se + 1) lev[i] = bst.fi;
int maxEl = 0;
for(int i = h - 1; i >= bst.fi; i--){
rep(j, bst.se + 1) maxEl = max(maxEl, g[i][j]);
}
//now we do the initial extension
int mx2 = 0, mx3 = 0;
int mn2 = 2e9, mn3 = 2e9;
while(lev[0] > 0 && g[lev[0] - 1][0] <= maxEl) lev[0]--;
repn(i, 1, w){
while(lev[i] > 0 && lev[i] > lev[i - 1] && g[lev[i] - 1][i] <= maxEl){
lev[i]--;
}
}
rep(j, w){
if(lev[j] != h){
mx2 = max(mx2, mx1[lev[j]][j]);
mn2 = min(mn2, mn1[lev[j]][j]);
}
if(lev[j]){
mx3 = max(mx3, mx[lev[j] - 1][j]);
mn3 = min(mn3, mn[lev[j] - 1][j]);
}
}
ans = min(ans, max(mx3 - mn3, mx2 - mn2));
int cur = 0;
while(true){
//move the pointer if we finished the last col
while(cur < w && !lev[cur]) cur++;
if(cur == w) break;
int mnxt = 2e9;
rep(j, w){
if(lev[j] && (!j || (j && lev[j] > lev[j - 1]))){
mnxt = min(mnxt, g[lev[j] - 1][j]);
}
}
maxEl = max(maxEl, mnxt);
int mx2 = 0, mx3 = 0;
int mn2 = 2e9, mn3 = 2e9;
while(lev[0] > 0 && g[lev[0] - 1][0] <= maxEl) lev[0]--;
repn(i, 1, w){
while(lev[i] > 0 && lev[i] > lev[i - 1] && g[lev[i] - 1][i] <= maxEl){
lev[i]--;
if(cur == (w - 1) && i == (w - 1)) break;
}
}
if(cur == (w - 1) && !lev[cur]) break;
rep(j, w){
if(lev[j] != h){
mx2 = max(mx2, mx1[lev[j]][j]);
mn2 = min(mn2, mn1[lev[j]][j]);
}
if(lev[j]){
mx3 = max(mx3, mx[min(h - 1, lev[j] - 1)][j]);
mn3 = min(mn3, mn[min(h - 1, lev[j] - 1)][j]);
}
}
//update answer
ans = min(ans, max(mx3 - mn3, mx2 - mn2));
}
return ans;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(0);
//freopen("input.in", "r", stdin);
//freopen("output.out", "w", stdout);
cin >> h >> w;
rep(i, h) rep(j, w) cin >> g[i][j];
int mn0 = 2e9;
rep(i, h) rep(j, w) if(g[i][j] < mn0){
mn0 = g[i][j];
bst = mp(i, j);
}
int ans = solve();
bst = {h - 1 - bst.fi, bst.se};
rep(i, h / 2) rep(j, w) swap(g[i][j], g[h - i - 1][j]);
ans = min(ans, solve());
bst = {bst.fi, w - 1 - bst.se};
rep(i, h) rep(j, w / 2) swap(g[i][j], g[i][w - j - 1]);
ans = min(ans, solve());
rep(i, h / 2) rep(j, w) swap(g[i][j], g[h - i - 1][j]);
bst = {h - 1 - bst.fi, bst.se};
ans = min(ans, solve());
cout << ans << endl;
return 0;
}
/*
Things to look out for:
- Integer overflows
- Array bounds
- Special cases
Be careful!
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
512 KB |
Output is correct |
2 |
Correct |
1 ms |
512 KB |
Output is correct |
3 |
Correct |
1 ms |
512 KB |
Output is correct |
4 |
Correct |
1 ms |
512 KB |
Output is correct |
5 |
Correct |
1 ms |
512 KB |
Output is correct |
6 |
Correct |
1 ms |
512 KB |
Output is correct |
7 |
Correct |
1 ms |
512 KB |
Output is correct |
8 |
Correct |
1 ms |
512 KB |
Output is correct |
9 |
Correct |
1 ms |
640 KB |
Output is correct |
10 |
Correct |
1 ms |
512 KB |
Output is correct |
11 |
Correct |
1 ms |
512 KB |
Output is correct |
12 |
Correct |
1 ms |
512 KB |
Output is correct |
13 |
Correct |
1 ms |
512 KB |
Output is correct |
14 |
Correct |
1 ms |
640 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
512 KB |
Output is correct |
2 |
Correct |
1 ms |
512 KB |
Output is correct |
3 |
Correct |
1 ms |
512 KB |
Output is correct |
4 |
Correct |
1 ms |
512 KB |
Output is correct |
5 |
Correct |
1 ms |
512 KB |
Output is correct |
6 |
Correct |
1 ms |
512 KB |
Output is correct |
7 |
Correct |
1 ms |
512 KB |
Output is correct |
8 |
Correct |
1 ms |
512 KB |
Output is correct |
9 |
Correct |
1 ms |
640 KB |
Output is correct |
10 |
Correct |
1 ms |
512 KB |
Output is correct |
11 |
Correct |
1 ms |
512 KB |
Output is correct |
12 |
Correct |
1 ms |
512 KB |
Output is correct |
13 |
Correct |
1 ms |
512 KB |
Output is correct |
14 |
Correct |
1 ms |
640 KB |
Output is correct |
15 |
Correct |
1 ms |
672 KB |
Output is correct |
16 |
Correct |
6 ms |
5120 KB |
Output is correct |
17 |
Correct |
8 ms |
5120 KB |
Output is correct |
18 |
Correct |
9 ms |
5120 KB |
Output is correct |
19 |
Correct |
9 ms |
5120 KB |
Output is correct |
20 |
Correct |
7 ms |
4608 KB |
Output is correct |
21 |
Correct |
8 ms |
5120 KB |
Output is correct |
22 |
Correct |
9 ms |
5120 KB |
Output is correct |
23 |
Correct |
9 ms |
5248 KB |
Output is correct |
24 |
Correct |
8 ms |
4608 KB |
Output is correct |
25 |
Correct |
9 ms |
5120 KB |
Output is correct |
26 |
Correct |
9 ms |
5120 KB |
Output is correct |
27 |
Correct |
8 ms |
5120 KB |
Output is correct |
28 |
Correct |
9 ms |
5120 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
512 KB |
Output is correct |
2 |
Correct |
1 ms |
512 KB |
Output is correct |
3 |
Correct |
1 ms |
512 KB |
Output is correct |
4 |
Correct |
1 ms |
512 KB |
Output is correct |
5 |
Correct |
1 ms |
512 KB |
Output is correct |
6 |
Correct |
1 ms |
512 KB |
Output is correct |
7 |
Correct |
1 ms |
512 KB |
Output is correct |
8 |
Correct |
1 ms |
512 KB |
Output is correct |
9 |
Correct |
1 ms |
640 KB |
Output is correct |
10 |
Correct |
1 ms |
512 KB |
Output is correct |
11 |
Correct |
1 ms |
512 KB |
Output is correct |
12 |
Correct |
1 ms |
512 KB |
Output is correct |
13 |
Correct |
1 ms |
512 KB |
Output is correct |
14 |
Correct |
1 ms |
640 KB |
Output is correct |
15 |
Correct |
1 ms |
672 KB |
Output is correct |
16 |
Correct |
6 ms |
5120 KB |
Output is correct |
17 |
Correct |
8 ms |
5120 KB |
Output is correct |
18 |
Correct |
9 ms |
5120 KB |
Output is correct |
19 |
Correct |
9 ms |
5120 KB |
Output is correct |
20 |
Correct |
7 ms |
4608 KB |
Output is correct |
21 |
Correct |
8 ms |
5120 KB |
Output is correct |
22 |
Correct |
9 ms |
5120 KB |
Output is correct |
23 |
Correct |
9 ms |
5248 KB |
Output is correct |
24 |
Correct |
8 ms |
4608 KB |
Output is correct |
25 |
Correct |
9 ms |
5120 KB |
Output is correct |
26 |
Correct |
9 ms |
5120 KB |
Output is correct |
27 |
Correct |
8 ms |
5120 KB |
Output is correct |
28 |
Correct |
9 ms |
5120 KB |
Output is correct |
29 |
Correct |
1585 ms |
75128 KB |
Output is correct |
30 |
Correct |
1559 ms |
78840 KB |
Output is correct |
31 |
Correct |
1738 ms |
78980 KB |
Output is correct |
32 |
Correct |
1606 ms |
79096 KB |
Output is correct |
33 |
Correct |
1586 ms |
69404 KB |
Output is correct |
34 |
Correct |
1709 ms |
78968 KB |
Output is correct |
35 |
Correct |
1697 ms |
79004 KB |
Output is correct |
36 |
Correct |
1663 ms |
78460 KB |
Output is correct |
37 |
Correct |
1773 ms |
79008 KB |
Output is correct |