Submission #298738

# Submission time Handle Problem Language Result Execution time Memory
298738 2020-09-13T22:46:30 Z eggag32 The Kingdom of JOIOI (JOI17_joioi) C++17
100 / 100
1780 ms 79352 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef vector<int> vi;
typedef pair<int, int> pi;
#define debug(x) cerr << #x << ": " << x << endl
#define debug2(x, y) debug(x), debug(y)
#define repn(i, a, b) for(int i = (int)(a); i < (int)(b); i++)
#define rep(i, a) for(int i = 0; i < (int)(a); i++)
#define all(v) v.begin(), v.end() 
#define mp make_pair
#define pb push_back
#define lb lower_bound
#define ub upper_bound
#define fi first
#define se second
#define sq(x) ((x) * (x))
const int mxN = 2005;

template<class T> T gcd(T a, T b){ return ((b == 0) ? a : gcd(b, a % b)); }

int h, w;
int g[mxN][mxN];
int mn[mxN][mxN], mn1[mxN][mxN];
int mx[mxN][mxN], mx1[mxN][mxN];
pi bst;

int solve(){
	//compute all the mins and maxes
	//mn and mx are for top
	//mn1 and mx1 are for bottom
	rep(j, w){
		mn[0][j] = g[0][j];
		mx[0][j] = g[0][j];
		repn(i, 1, h){
			mn[i][j] = min(mn[i - 1][j], g[i][j]);
			mx[i][j] = max(mx[i - 1][j], g[i][j]);
		}
	}
	rep(j, w){
		mn1[h - 1][j] = g[h - 1][j];
		mx1[h - 1][j] = g[h - 1][j];
		for(int i = h - 2; i >= 0; i--){
			mn1[i][j] = min(mn1[i + 1][j], g[i][j]);
			mx1[i][j] = max(mx1[i + 1][j], g[i][j]);
		}
	}
	int ans = 2e9;
	vi lev(w, h);
	rep(i, bst.se + 1) lev[i] = bst.fi;
	//rep(i, w) cout << lev[i] << " ";
	//cout << endl;
	int maxEl = 0;
	for(int i = h - 1; i >= bst.fi; i--){
		rep(j, bst.se + 1) maxEl = max(maxEl, g[i][j]);
	}
	//debug(maxEl);
	//now we do the initial extension
	int mx2 = 0, mx3 = 0;
	int mn2 = 2e9, mn3 = 2e9;
	while(lev[0] > 0 && g[lev[0] - 1][0] <= maxEl) lev[0]--;
	repn(i, 1, w){
		 while(lev[i] > 0 && lev[i] > lev[i - 1] && g[lev[i] - 1][i] <= maxEl){
		 	lev[i]--;
		 }
	}
	rep(j, w){
		if(lev[j] != h){
			mx2 = max(mx2, mx1[lev[j]][j]);
			mn2 = min(mn2, mn1[lev[j]][j]);
		}
		if(lev[j]){
			mx3 = max(mx3, mx[lev[j] - 1][j]);
			mn3 = min(mn3, mn[lev[j] - 1][j]);
		}
	}
	/*
	rep(i, w) cout << lev[i] << " ";
	cout << endl;
	debug2(mx3, mn3);
	debug2(mx2, mn2);
	*/
	ans = min(ans, max(mx3 - mn3, mx2 - mn2));
	int cur = 0;
	while(true){
		//move the pointer if we finished the last col
		while(cur < w && !lev[cur]) cur++;
		if(cur == w) break;
		int mnxt = 2e9;
		rep(j, w){
			if(lev[j] && (!j || (j && lev[j] > lev[j - 1]))){
				mnxt = min(mnxt, g[lev[j] - 1][j]);
			}
		}
		maxEl = max(maxEl, mnxt);
		int mx2 = 0, mx3 = 0;
		int mn2 = 2e9, mn3 = 2e9;
		while(lev[0] > 0 && g[lev[0] - 1][0] <= maxEl) lev[0]--;
		repn(i, 1, w){
			 while(lev[i] > 0 && lev[i] > lev[i - 1] && g[lev[i] - 1][i] <= maxEl){
			 	lev[i]--;
				if(cur == (w - 1) && i == (w - 1)) break;
			 }
		}
		if(cur == (w - 1) && !lev[cur]) break;
		rep(j, w){
			if(lev[j] != h){
				mx2 = max(mx2, mx1[lev[j]][j]);
				mn2 = min(mn2, mn1[lev[j]][j]);
			}
			if(lev[j]){
				mx3 = max(mx3, mx[min(h - 1, lev[j] - 1)][j]);
				mn3 = min(mn3, mn[min(h - 1, lev[j] - 1)][j]);
			}
		}
		/*
		rep(i, w) cout << lev[i] << " ";
		cout << endl;
		debug2(mx3, mn3);
		debug2(mx2, mn2);
		*/
		//update answer
		ans = min(ans, max(mx3 - mn3, mx2 - mn2));
	}
	//cout << "=========" << endl;
	return ans;
}

int main(){
	ios_base::sync_with_stdio(false);
	cin.tie(0);
	//freopen("input.in", "r", stdin);
	//freopen("output.out", "w", stdout);
	cin >> h >> w;
	rep(i, h) rep(j, w) cin >> g[i][j];
	int mn0 = 2e9;
	rep(i, h) rep(j, w) if(g[i][j] < mn0){
		mn0 = g[i][j];
		bst = mp(i, j);
	}
	int ans = solve();
	bst = {h - 1 - bst.fi, bst.se};
	rep(i, h / 2) rep(j, w) swap(g[i][j], g[h - i - 1][j]);
	ans = min(ans, solve());
	bst = {bst.fi, w - 1 - bst.se};
	rep(i, h) rep(j, w / 2) swap(g[i][j], g[i][w - j - 1]);
	ans = min(ans, solve());
	rep(i, h / 2) rep(j, w) swap(g[i][j], g[h - i - 1][j]);
	bst = {h - 1 - bst.fi, bst.se};
	ans = min(ans, solve());
	cout << ans << endl;
	return 0;
}
/*
Things to look out for:
	- Integer overflows
	- Array bounds
	- Special cases
Be careful!
*/
# Verdict Execution time Memory Grader output
1 Correct 1 ms 512 KB Output is correct
2 Correct 1 ms 512 KB Output is correct
3 Correct 1 ms 512 KB Output is correct
4 Correct 1 ms 512 KB Output is correct
5 Correct 1 ms 512 KB Output is correct
6 Correct 1 ms 512 KB Output is correct
7 Correct 1 ms 512 KB Output is correct
8 Correct 1 ms 512 KB Output is correct
9 Correct 1 ms 512 KB Output is correct
10 Correct 1 ms 640 KB Output is correct
11 Correct 1 ms 512 KB Output is correct
12 Correct 1 ms 512 KB Output is correct
13 Correct 1 ms 512 KB Output is correct
14 Correct 1 ms 512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 512 KB Output is correct
2 Correct 1 ms 512 KB Output is correct
3 Correct 1 ms 512 KB Output is correct
4 Correct 1 ms 512 KB Output is correct
5 Correct 1 ms 512 KB Output is correct
6 Correct 1 ms 512 KB Output is correct
7 Correct 1 ms 512 KB Output is correct
8 Correct 1 ms 512 KB Output is correct
9 Correct 1 ms 512 KB Output is correct
10 Correct 1 ms 640 KB Output is correct
11 Correct 1 ms 512 KB Output is correct
12 Correct 1 ms 512 KB Output is correct
13 Correct 1 ms 512 KB Output is correct
14 Correct 1 ms 512 KB Output is correct
15 Correct 1 ms 640 KB Output is correct
16 Correct 7 ms 5248 KB Output is correct
17 Correct 9 ms 5504 KB Output is correct
18 Correct 9 ms 5376 KB Output is correct
19 Correct 9 ms 5376 KB Output is correct
20 Correct 8 ms 4864 KB Output is correct
21 Correct 9 ms 5504 KB Output is correct
22 Correct 10 ms 5504 KB Output is correct
23 Correct 10 ms 5504 KB Output is correct
24 Correct 9 ms 4992 KB Output is correct
25 Correct 10 ms 5504 KB Output is correct
26 Correct 9 ms 5504 KB Output is correct
27 Correct 9 ms 5504 KB Output is correct
28 Correct 9 ms 5504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 512 KB Output is correct
2 Correct 1 ms 512 KB Output is correct
3 Correct 1 ms 512 KB Output is correct
4 Correct 1 ms 512 KB Output is correct
5 Correct 1 ms 512 KB Output is correct
6 Correct 1 ms 512 KB Output is correct
7 Correct 1 ms 512 KB Output is correct
8 Correct 1 ms 512 KB Output is correct
9 Correct 1 ms 512 KB Output is correct
10 Correct 1 ms 640 KB Output is correct
11 Correct 1 ms 512 KB Output is correct
12 Correct 1 ms 512 KB Output is correct
13 Correct 1 ms 512 KB Output is correct
14 Correct 1 ms 512 KB Output is correct
15 Correct 1 ms 640 KB Output is correct
16 Correct 7 ms 5248 KB Output is correct
17 Correct 9 ms 5504 KB Output is correct
18 Correct 9 ms 5376 KB Output is correct
19 Correct 9 ms 5376 KB Output is correct
20 Correct 8 ms 4864 KB Output is correct
21 Correct 9 ms 5504 KB Output is correct
22 Correct 10 ms 5504 KB Output is correct
23 Correct 10 ms 5504 KB Output is correct
24 Correct 9 ms 4992 KB Output is correct
25 Correct 10 ms 5504 KB Output is correct
26 Correct 9 ms 5504 KB Output is correct
27 Correct 9 ms 5504 KB Output is correct
28 Correct 9 ms 5504 KB Output is correct
29 Correct 1575 ms 75128 KB Output is correct
30 Correct 1566 ms 78968 KB Output is correct
31 Correct 1731 ms 78984 KB Output is correct
32 Correct 1616 ms 78968 KB Output is correct
33 Correct 1591 ms 69348 KB Output is correct
34 Correct 1713 ms 78964 KB Output is correct
35 Correct 1716 ms 79352 KB Output is correct
36 Correct 1674 ms 78688 KB Output is correct
37 Correct 1780 ms 79196 KB Output is correct