This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include "walk.h"
#include <bits/stdc++.h>
using namespace std;
// Input
long long N, X[1 << 18], H[1 << 18];
long long M, L[1 << 18], R[1 << 18], Y[1 << 18];
long long SX, GX;
// Compress
vector<pair<long long, long long>> V[1 << 18];
set<pair<long long, long long>> Set;
vector<tuple<long long, long long, long long>> tup;
// Graph
int I;
long long dist[1400000];
vector<pair<long long, long long>> G[1400000];
priority_queue<pair<long long, long long>, vector<pair<long long, long long>>, greater<pair<long long, long long>>> Q;
long long min_distance(vector<int> x, vector<int> h, vector<int> l, vector<int> r, vector<int> y, int s, int g) {
N = x.size();
M = l.size();
SX = s;
GX = g;
for (int i = 0; i < N; i++) X[i] = x[i];
for (int i = 0; i < N; i++) H[i] = h[i];
for (int i = 0; i < M; i++) L[i] = l[i];
for (int i = 0; i < M; i++) R[i] = r[i];
for (int i = 0; i < M; i++) Y[i] = y[i];
// Step #1. Maeshori
for (int i = 0; i < N; i++) tup.push_back(make_tuple(H[i], 2, i));
for (int i = 0; i < M; i++) tup.push_back(make_tuple(Y[i], 1, i));
sort(tup.begin(), tup.end());
reverse(tup.begin(), tup.end());
// Step #2. Make Graph
I = N;
for (int i = 0; i < (int)tup.size(); i++) {
if(get<1>(tup[i]) == 1) {
int idx = get<2>(tup[i]);
auto itr = Set.lower_bound(make_pair(X[L[idx]], L[idx]));
vector<pair<int, int>> vec;
while (itr != Set.end()) {
pair<int, int> val = (*itr);
if(val.first > X[R[idx]]) break;
vec.push_back(make_pair(I, val.first));
V[val.second].push_back(make_pair(get<0>(tup[i]), I));
I += 1;
itr++;
}
for (int j = 0; j < (int)vec.size() - 1; j++) {
long long dst = (vec[j + 1].second - vec[j + 0].second);
G[vec[j + 0].first].push_back(make_pair(vec[j + 1].first, dst));
G[vec[j + 1].first].push_back(make_pair(vec[j + 0].first, dst));
}
}
if(get<1>(tup[i]) == 2) {
int idx = get<2>(tup[i]);
Set.insert(make_pair(X[idx], idx));
}
}
// Step #3. Make Graph 2
for (int i = 0; i < N; i++) V[i].push_back(make_pair(0, i));
for (int i = 0; i < N; i++) {
sort(V[i].begin(), V[i].end());
for (int j = 0; j < (int)V[i].size() - 1; j++) {
int to1 = V[i][j].second;
int to2 = V[i][j + 1].second;
long long dst = V[i][j + 1].first - V[i][j].first;
G[to1].push_back(make_pair(to2, dst));
G[to2].push_back(make_pair(to1, dst));
}
}
// Step #4. Dijkstra
for (int i = 0; i < I; i++) dist[i] = (1LL << 60);
dist[SX] = 0;
Q.push(make_pair(0, SX));
while (!Q.empty()) {
int pos = Q.top().second; Q.pop();
for (int i = 0; i < (int)G[pos].size(); i++) {
int to = G[pos][i].first;
long long cost = G[pos][i].second;
if (dist[to] > dist[pos] + cost) {
dist[to] = dist[pos] + cost;
Q.push(make_pair(dist[to], to));
}
}
}
if (dist[GX] == (1LL << 60)) return -1;
return dist[GX];
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |