This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
#include"holiday.h"
#pragma GCC optimize("O3")
#define ll long long
using namespace std;
const int L = 131072;
vector<int> t[2*L];
vector<ll> p[2*L];
int num(int l, int r, int x){
int s = 0;
l += L, r += L;
while(l <= r){
if(l&1) s += upper_bound(t[l].begin(), t[l].end(), x, greater<int>())-t[l].begin(), l++;
if(!(r&1)) s += upper_bound(t[r].begin(), t[r].end(), x, greater<int>())-t[r].begin(), r--;
l >>= 1, r >>= 1;
}
return s;
}
ll qry(int l, int r, int x, ll &mi){
ll s = 0;
l += L, r += L;
while(l <= r){
if(l&1){
int idx = upper_bound(t[l].begin(), t[l].end(), x, greater<int>())-t[l].begin()-1;
if(idx >= 0) s += p[l][idx];
if(idx+1 < (int)p[l].size()) mi = max(mi, (ll)t[l][idx+1]);
l++;
}
if(!(r&1)){
int idx = upper_bound(t[r].begin(), t[r].end(), x, greater<int>())-t[r].begin()-1;
if(idx >= 0) s += p[r][idx];
if(idx+1 < (int)p[r].size()) mi = max(mi, (ll)t[r][idx+1]);
r--;
}
l >>= 1, r >>= 1;
}
return s;
}
ll sum(int l, int r, int k){
k = min(k, r-l+1);
int a = 0, b = 1e9, m;
while(a < b){
if(a == b-1){
if(num(l, r, a) <= k) b--;
else a++;
}
else{
m = (a+b)/2;
if(num(l, r, m) <= k) b = m;
else a = m+1;
}
}
ll mi = 0, ret = qry(l, r, a, mi);
ret += mi*(k-num(l, r, a));
return ret;
}
ll st2(int n, int d){
ll res = 0;
for(int i = 0; i < min(n, d); i++) res = max(res, sum(0, i, d-i));
return res;
}
ll findMaxAttraction(int n, int start, int d, int attraction[]){
for(int i = 0; i < n; i++) t[i+L] = {attraction[i]}, p[i+L] = {attraction[i]};
for(int i = L-1; i; i--){
merge(begin(t[i<<1]), end(t[i<<1]), begin(t[i<<1|1]), end(t[i<<1|1]), back_inserter(t[i]),
greater<int>());
for(int j = 0; j < (int)t[i].size(); j++){
p[i].push_back(t[i][j]);
if(j) p[i].back() += p[i][p[i].size()-2];
}
}
if(!start) return st2(n, d);
ll sol = 0;
for(int i = 0; i <= start; i++){
for(int j = min(n-1, max(start, max((d+3*i-start-1)/2, (d+start+2*i-1)/3))); j < n; j++){
sol = max(sol, sum(i, j, d-min(j-start, start-i)*2-max(j-start, start-i)));
}
}
return sol;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |