#include <bits/stdc++.h>
using namespace std;
class Fenwick {
public:
int sz;
vector<int> tree;
vector<pair<int, int>> coords;
Fenwick() {}
void AddCoordinate(pair<int, int> x) {
coords.emplace_back(x);
}
void Build() {
sort(begin(coords), end(coords));
coords.resize(unique(begin(coords), end(coords)) - begin(coords));
sz = coords.size();
tree.assign(sz, 0);
}
void Modify(pair<int, int> pi, int x) {
int p = lower_bound(begin(coords), end(coords), pi) - begin(coords);
assert(p != (int) coords.size() && coords[p] == pi);
for (int i = p; i < sz; i |= i + 1) {
tree[i] += x;
}
}
int Query(pair<int, int> pi) {
int p = upper_bound(begin(coords), end(coords), pi) - begin(coords);
int res = 0;
for (int i = p; i > 0; i &= i - 1) {
res += tree[i - 1];
}
return res;
}
};
class RangeTree {
public:
int sz;
vector<Fenwick> tree;
RangeTree() {}
RangeTree(int sz) : sz(sz), tree(2 * sz) {}
void AddCoordinate(int i, int x) {
for (int p = i + sz; p > 0; p /= 2) {
tree[p].AddCoordinate({x, i});
}
}
void Build() {
for (int i = 0; i < 2 * sz; i++) {
tree[i].Build();
}
}
void Modify(int i, int x, int t) {
for (int p = i + sz; p > 0; p /= 2) {
tree[p].Modify({x, i}, t);
}
}
int Query(int ql, int qr) {
int res = (qr - ql);
for (int l = ql + sz, r = qr + sz; l < r; l /= 2, r /= 2) {
if (l & 1) res -= tree[l++].Query({qr, -1});
if (r & 1) res -= tree[--r].Query({qr, -1});
}
return res;
}
};
int main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int R, C, Q;
cin >> R >> C >> Q;
vector<array<int, 3>> levels;
vector<vector<int>> L(R, vector<int>(C));
vector<vector<int>> P(R, vector<int>(C));
for (int i = 0; i < R; i++) {
for (int j = 0; j < C; j++) {
cin >> L[i][j];
levels.push_back({L[i][j], i, j});
}
}
for (int i = 0; i < R; i++) {
for (int j = 0; j < C; j++) {
cin >> P[i][j];
}
}
const int BITS = 16;
vector<vector<int>> adj(R * C);
vector<vector<int>> parent(R * C, vector<int>(BITS, -1));
vector<int> comp(R * C);
iota(begin(comp), end(comp), 0);
function<int(int)> FindComp = [&](int x) {
return comp[x] == x ? x : comp[x] = FindComp(comp[x]);
};
const vector<int> dx = {0, 1, 0, -1};
const vector<int> dy = {1, 0, -1, 0};
const auto Inside = [&](int x, int y) {
return 0 <= x && x < R && 0 <= y && y < C;
};
sort(begin(levels), end(levels));
for (const auto &lv : levels) {
int x = lv[1], y = lv[2];
for (int d = 0; d < 4; d++) {
int nx = x + dx[d];
int ny = y + dy[d];
if (Inside(nx, ny) && L[nx][ny] < L[x][y]) {
int u = FindComp(nx * C + ny);
if (u != x * C + y) {
comp[u] = x * C + y;
parent[u][0] = x * C + y;
adj[x * C + y].emplace_back(u);
}
}
}
}
vector<int> st(R * C), et(R * C);
int timer = 0;
function<void(int)> Dfs = [&](int u) {
st[u] = timer++;
for (auto v : adj[u]) {
Dfs(v);
}
et[u] = timer;
};
Dfs(FindComp(0));
for (int j = 1; j < BITS; j++) {
for (int i = 0; i < R * C; i++) {
if (parent[i][j - 1] != -1) {
parent[i][j] = parent[parent[i][j - 1]][j - 1];
} else {
parent[i][j] = parent[i][j - 1];
}
}
}
RangeTree rtree(R * C);
const int M = 50005;
vector<int> A(R * C);
vector<set<int>> occ(M);
for (int i = 0; i < M; i++) {
occ[i].emplace(R * C);
}
for (int i = 0; i < R; i++) {
for (int j = 0; j < C; j++) {
A[st[i * C + j]] = P[i][j];
occ[P[i][j]].emplace(st[i * C + j]);
}
}
for (int i = 0; i < M; i++) {
for (auto j : occ[i]) if (j < R * C) {
rtree.AddCoordinate(j, *occ[i].upper_bound(j));
}
}
auto AddCoordinate = [&](int i, int x) {
auto it = occ[A[i]].find(i);
if (it != begin(occ[A[i]])) {
rtree.AddCoordinate(*prev(it), *it);
rtree.AddCoordinate(*prev(it), *next(it));
}
rtree.AddCoordinate(*it, *next(it));
occ[A[i]].erase(it);
A[i] = x;
occ[A[i]].insert(i);
it = occ[A[i]].find(i);
rtree.AddCoordinate(*it, *next(it));
if (it != begin(occ[A[i]])) {
rtree.AddCoordinate(*prev(it), *next(it));
rtree.AddCoordinate(*prev(it), *it);
}
};
vector<tuple<int, int, int, int>> queries;
for (int i = 0; i < Q; i++) {
int T, X, Y, Z;
cin >> T >> X >> Y >> Z;
queries.push_back(make_tuple(T, X, Y, Z));
X--, Y--;
swap(X, Y);
int P = X * C + Y;
if (T == 1) {
AddCoordinate(st[P], Z);
}
}
rtree.Build();
A.assign(R * C, 0);
occ.assign(M, set<int>());
for (int i = 0; i < M; i++) {
occ[i].emplace(R * C);
}
for (int i = 0; i < R; i++) {
for (int j = 0; j < C; j++) {
A[st[i * C + j]] = P[i][j];
occ[P[i][j]].emplace(st[i * C + j]);
}
}
for (int i = 0; i < M; i++) {
for (auto j : occ[i]) if (j < R * C) {
rtree.Modify(j, *occ[i].upper_bound(j), +1);
}
}
auto Update = [&](int i, int x) {
auto it = occ[A[i]].find(i);
if (it != begin(occ[A[i]])) {
rtree.Modify(*prev(it), *it, -1);
rtree.Modify(*prev(it), *next(it), +1);
}
rtree.Modify(*it, *next(it), -1);
occ[A[i]].erase(it);
A[i] = x;
occ[A[i]].insert(i);
it = occ[A[i]].find(i);
rtree.Modify(*it, *next(it), +1);
if (it != begin(occ[A[i]])) {
rtree.Modify(*prev(it), *next(it), -1);
rtree.Modify(*prev(it), *it, +1);
}
};
auto Query = [&](int l, int r) {
return rtree.Query(l, r);
};
for (int i = 0; i < Q; i++) {
int T, X, Y, Z;
tie(T, X, Y, Z) = queries[i];
X--, Y--;
swap(X, Y);
int P = X * C + Y;
if (T == 1) {
Update(st[P], Z);
} else if (T == 2) {
for (int j = BITS - 1; j >= 0; j--) {
int par = parent[P][j];
if (par != -1 && L[par / C][par % C] <= Z) {
P = par;
}
}
cout << (L[P / C][P % C] <= Z ? Query(st[P], et[P]) : 0) << "\n";
}
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
241 ms |
41904 KB |
Output is correct |
2 |
Correct |
381 ms |
43440 KB |
Output is correct |
3 |
Correct |
425 ms |
43948 KB |
Output is correct |
4 |
Correct |
266 ms |
43668 KB |
Output is correct |
5 |
Correct |
372 ms |
43312 KB |
Output is correct |
6 |
Correct |
396 ms |
42288 KB |
Output is correct |
7 |
Correct |
220 ms |
42928 KB |
Output is correct |
8 |
Correct |
338 ms |
43312 KB |
Output is correct |
9 |
Correct |
231 ms |
42928 KB |
Output is correct |
10 |
Correct |
407 ms |
43312 KB |
Output is correct |
11 |
Correct |
388 ms |
43440 KB |
Output is correct |
12 |
Correct |
411 ms |
43272 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
229 ms |
39728 KB |
Output is correct |
2 |
Correct |
344 ms |
40112 KB |
Output is correct |
3 |
Correct |
385 ms |
40396 KB |
Output is correct |
4 |
Correct |
239 ms |
42608 KB |
Output is correct |
5 |
Correct |
346 ms |
42736 KB |
Output is correct |
6 |
Correct |
373 ms |
41544 KB |
Output is correct |
7 |
Correct |
237 ms |
38812 KB |
Output is correct |
8 |
Correct |
352 ms |
39024 KB |
Output is correct |
9 |
Correct |
266 ms |
38548 KB |
Output is correct |
10 |
Correct |
420 ms |
39148 KB |
Output is correct |
11 |
Correct |
390 ms |
38512 KB |
Output is correct |
12 |
Correct |
420 ms |
39152 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
708 ms |
51236 KB |
Output is correct |
2 |
Correct |
2127 ms |
95020 KB |
Output is correct |
3 |
Correct |
3222 ms |
133212 KB |
Output is correct |
4 |
Correct |
3282 ms |
135888 KB |
Output is correct |
5 |
Correct |
2292 ms |
97884 KB |
Output is correct |
6 |
Correct |
869 ms |
52832 KB |
Output is correct |
7 |
Correct |
2297 ms |
93832 KB |
Output is correct |
8 |
Correct |
2278 ms |
93604 KB |
Output is correct |
9 |
Correct |
2299 ms |
93804 KB |
Output is correct |
10 |
Correct |
2318 ms |
94088 KB |
Output is correct |
11 |
Correct |
2248 ms |
93532 KB |
Output is correct |
12 |
Correct |
2262 ms |
93908 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
241 ms |
41904 KB |
Output is correct |
2 |
Correct |
381 ms |
43440 KB |
Output is correct |
3 |
Correct |
425 ms |
43948 KB |
Output is correct |
4 |
Correct |
266 ms |
43668 KB |
Output is correct |
5 |
Correct |
372 ms |
43312 KB |
Output is correct |
6 |
Correct |
396 ms |
42288 KB |
Output is correct |
7 |
Correct |
220 ms |
42928 KB |
Output is correct |
8 |
Correct |
338 ms |
43312 KB |
Output is correct |
9 |
Correct |
231 ms |
42928 KB |
Output is correct |
10 |
Correct |
407 ms |
43312 KB |
Output is correct |
11 |
Correct |
388 ms |
43440 KB |
Output is correct |
12 |
Correct |
411 ms |
43272 KB |
Output is correct |
13 |
Correct |
761 ms |
52004 KB |
Output is correct |
14 |
Correct |
2900 ms |
98864 KB |
Output is correct |
15 |
Correct |
4646 ms |
136264 KB |
Output is correct |
16 |
Correct |
3512 ms |
137228 KB |
Output is correct |
17 |
Correct |
2860 ms |
98844 KB |
Output is correct |
18 |
Correct |
953 ms |
51672 KB |
Output is correct |
19 |
Correct |
1865 ms |
93484 KB |
Output is correct |
20 |
Correct |
2723 ms |
98876 KB |
Output is correct |
21 |
Correct |
2131 ms |
95440 KB |
Output is correct |
22 |
Correct |
3000 ms |
95644 KB |
Output is correct |
23 |
Correct |
2971 ms |
98948 KB |
Output is correct |
24 |
Correct |
2525 ms |
87396 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
241 ms |
41904 KB |
Output is correct |
2 |
Correct |
381 ms |
43440 KB |
Output is correct |
3 |
Correct |
425 ms |
43948 KB |
Output is correct |
4 |
Correct |
266 ms |
43668 KB |
Output is correct |
5 |
Correct |
372 ms |
43312 KB |
Output is correct |
6 |
Correct |
396 ms |
42288 KB |
Output is correct |
7 |
Correct |
220 ms |
42928 KB |
Output is correct |
8 |
Correct |
338 ms |
43312 KB |
Output is correct |
9 |
Correct |
231 ms |
42928 KB |
Output is correct |
10 |
Correct |
407 ms |
43312 KB |
Output is correct |
11 |
Correct |
388 ms |
43440 KB |
Output is correct |
12 |
Correct |
411 ms |
43272 KB |
Output is correct |
13 |
Correct |
229 ms |
39728 KB |
Output is correct |
14 |
Correct |
344 ms |
40112 KB |
Output is correct |
15 |
Correct |
385 ms |
40396 KB |
Output is correct |
16 |
Correct |
239 ms |
42608 KB |
Output is correct |
17 |
Correct |
346 ms |
42736 KB |
Output is correct |
18 |
Correct |
373 ms |
41544 KB |
Output is correct |
19 |
Correct |
237 ms |
38812 KB |
Output is correct |
20 |
Correct |
352 ms |
39024 KB |
Output is correct |
21 |
Correct |
266 ms |
38548 KB |
Output is correct |
22 |
Correct |
420 ms |
39148 KB |
Output is correct |
23 |
Correct |
390 ms |
38512 KB |
Output is correct |
24 |
Correct |
420 ms |
39152 KB |
Output is correct |
25 |
Correct |
708 ms |
51236 KB |
Output is correct |
26 |
Correct |
2127 ms |
95020 KB |
Output is correct |
27 |
Correct |
3222 ms |
133212 KB |
Output is correct |
28 |
Correct |
3282 ms |
135888 KB |
Output is correct |
29 |
Correct |
2292 ms |
97884 KB |
Output is correct |
30 |
Correct |
869 ms |
52832 KB |
Output is correct |
31 |
Correct |
2297 ms |
93832 KB |
Output is correct |
32 |
Correct |
2278 ms |
93604 KB |
Output is correct |
33 |
Correct |
2299 ms |
93804 KB |
Output is correct |
34 |
Correct |
2318 ms |
94088 KB |
Output is correct |
35 |
Correct |
2248 ms |
93532 KB |
Output is correct |
36 |
Correct |
2262 ms |
93908 KB |
Output is correct |
37 |
Correct |
761 ms |
52004 KB |
Output is correct |
38 |
Correct |
2900 ms |
98864 KB |
Output is correct |
39 |
Correct |
4646 ms |
136264 KB |
Output is correct |
40 |
Correct |
3512 ms |
137228 KB |
Output is correct |
41 |
Correct |
2860 ms |
98844 KB |
Output is correct |
42 |
Correct |
953 ms |
51672 KB |
Output is correct |
43 |
Correct |
1865 ms |
93484 KB |
Output is correct |
44 |
Correct |
2723 ms |
98876 KB |
Output is correct |
45 |
Correct |
2131 ms |
95440 KB |
Output is correct |
46 |
Correct |
3000 ms |
95644 KB |
Output is correct |
47 |
Correct |
2971 ms |
98948 KB |
Output is correct |
48 |
Correct |
2525 ms |
87396 KB |
Output is correct |
49 |
Correct |
756 ms |
51640 KB |
Output is correct |
50 |
Correct |
2884 ms |
98348 KB |
Output is correct |
51 |
Correct |
4674 ms |
135940 KB |
Output is correct |
52 |
Correct |
3594 ms |
138640 KB |
Output is correct |
53 |
Correct |
3003 ms |
101304 KB |
Output is correct |
54 |
Correct |
1147 ms |
52832 KB |
Output is correct |
55 |
Correct |
1976 ms |
91352 KB |
Output is correct |
56 |
Correct |
2862 ms |
97628 KB |
Output is correct |
57 |
Correct |
2255 ms |
93624 KB |
Output is correct |
58 |
Correct |
3093 ms |
93532 KB |
Output is correct |
59 |
Correct |
3058 ms |
96996 KB |
Output is correct |
60 |
Correct |
2601 ms |
85456 KB |
Output is correct |