Submission #293152

# Submission time Handle Problem Language Result Execution time Memory
293152 2020-09-07T16:54:16 Z Kastanda Ancient Books (IOI17_books) C++11
22 / 100
789 ms 159504 KB
// M
#include<bits/stdc++.h>
#include "books.h"
using namespace std;
typedef long long ll;
const int N = 1000006, MXN = 1003;
int n, st, k, T[N], P[N], A[N], mn[N], mx[N], MC[N];
ll dp[MXN][MXN];
int mark[MXN][MXN];
vector < tuple < int , int , int > > E;
int Find(int v)
{
        return (P[v] < 0 ? v : (P[v] = Find(P[v])));
}
inline void Merge(int v, int u)
{
        v = Find(v);
        u = Find(u);
        if (v == u)
                return ;
        P[u] = v;
        mn[v] = min(mn[v], mn[u]);
        mx[v] = max(mx[v], mx[u]);
}
inline void AddEdge(int v, int u, int w)
{
        E.push_back({w, v, u});
}

long long minimum_walk(vector < int > _A, int _st)
{
        n = (int)_A.size();
        st = _st + 1;
        for (int i = 1; i <= n; i ++)
                A[i] = _A[i - 1] + 1;

        ll SM = 0, tot = 0;
        for (int i = 1; i <= n; i ++)
                SM += abs(A[i] - i);
        memset(P, -1, sizeof(P));
        for (int i = 1; i <= n; i ++)
                mn[i] = mx[i] = i;
        set < int > ST;
        for (int i = 1; i <= n; i ++)
                ST.insert(i);

        vector < int > M(n + 1, 0);
        vector < pair < int , int > > Roller;
        for (int i = 1; i <= n; i ++)
                if (!M[i] && A[i] != i)
                {
                        auto Do = [&](int l, int r){
                                if (l >= r)
                                        return ;
                                auto it = ST.lower_bound(l);
                                while (it != ST.end() && * it < r)
                                        Merge(* it, (* it) + 1), it = ST.erase(it);
                                return ;
                        };

                        vector < int > V;
                        int nw = i;
                        while (!M[nw])
                                V.push_back(nw), M[nw] = 1, nw = A[nw];
                        sort(V.begin(), V.end());
                        int is = 0;
                        for (int j : V)
                                if (j == st)
                                        is = 1;
                        for (int j = 0; j + 1 < (int)V.size(); j ++)
                        {
                                if (V[j + 1] < st || V[j] > st || is)
                                        Do(V[j], V[j + 1]);
                                else
                                        Roller.push_back({V[j], V[j + 1]});
                        }
                }

        /*
        for (int i = 1; i <= n; i ++)
                if (i != A[i])
                {
                                        int l = min(i, A[i]);
                        int r = max(i, A[i]);

                        Do(l, min(r, st - 1));
                        Do(max(st + 1, l), r);
                }
        */
        vector < pair < pair < int , int > , int > > vec;
        for (int i = 1; i <= n; i ++)
                if ((Find(i) == i && i != A[i]))
                        vec.push_back({{mn[i], mx[i]}, i});
        if (Find(st) == st && A[st] == st)
        {
                //T[st] = ++ k;
                vec.push_back({{st, st}, st});
        }
        sort(vec.begin(), vec.end());
        for (int i = 0; i < (int)vec.size(); i ++)
                T[vec[i].second] = i;



        //assert(Find(st) == st);
        /*for (int i = 1; i <= n; i ++)
                if (i != A[i])
                {
                        int l = min(i, A[i]);
                        int r = max(i, A[i]);

                        if (l <= st && st <= r)
                                AddEdge(T[Find(l)], T[Find(r)], 0);
                }*/

        memset(MC, -1, sizeof(MC));
        for (auto X : Roller)
        {
                int v = Find(X.first);
                int u = Find(X.second);
                MC[T[v]] = T[u];
                MC[T[u]] = T[v];
                //AddEdge(T[v], T[u], 0);
        }
/*
        for (auto X : vec)
                printf("%d , %d :: %d\n", X.first.first, X.first.second, X.second);

        for (int i = 0; i < (int)vec.size(); i ++)
                printf("%d ", MC[i]);
        printf("\n");
*/
        if (n <= 1000)
        {
                memset(dp, 63, sizeof(dp));
                int now = -1;
                for (int i = 0; i < (int)vec.size(); i ++)
                        if (vec[i].first.first <= st && vec[i].first.second >= st)
                                now = i;
                assert(now != -1);
                dp[now][now] = 0;
          assert(MC[now] == -1 || MC[now] == now);
                mark[now][now] = 1;
                int sz = (int)vec.size();
                for (int l = now; l >= 0; l --)
                        for (int r = now; r < sz; r ++)
                        {
                                if (!mark[l][r])
                                        continue;
                                //printf("%d :: %d\n", l, r);
                                if (l > 0)
                                {
                                        ll d = dp[l][r] + vec[l].first.first - vec[l - 1].first.second;
                                        int le = l;
                                        int ri = r;
                                        int mn = l - 1;
                                        int mx = r;
                                        while (le > mn || ri < mx)
                                        {
                                                if (le > mn)
                                                {
                                                        le --;
                                                        if (MC[le] != -1)
                                                                mn = min(mn, MC[le]), mx = max(mx, MC[le]);
                                                }
                                                if (ri < mx)
                                                {
                                                        ri ++;
                                                        if (MC[ri] != -1)
                                                                mn = min(mn, MC[ri]), mx = max(mx, MC[ri]);
                                                }
                                        }
                                        dp[le][ri] = min(dp[le][ri], d);
                                        mark[le][ri] = 1;
                                }
                                if (r + 1 < sz)
                                {
                                        ll d = dp[l][r] + vec[r + 1].first.first - vec[r].first.second;
                                        int le = l;
                                        int ri = r;
                                        int mn = l;
                                        int mx = r + 1;
                                        while (le > mn || ri < mx)
                                        {
                                                if (le > mn)
                                                {
                                                        le --;
                                                        if (MC[le] != -1)
                                                                mn = min(mn, MC[le]), mx = max(mx, MC[le]);
                                                }
                                                if (ri < mx)
                                                {
                                                        ri ++;
                                                        if (MC[ri] != -1)
                                                                mn = min(mn, MC[ri]), mx = max(mx, MC[ri]);
                                                }
                                        }
                                        dp[le][ri] = min(dp[le][ri], d);
                                        mark[le][ri] = 1;

                                }
                        }
                tot = dp[0][sz - 1] * 2;
                return SM + tot;

        }
        assert(0);

        for (int i = 0; i + 1 < k; i ++)
                AddEdge(vec[i].second, vec[i + 1].second, vec[i + 1].first.first - vec[i].first.second);

        sort(E.begin(), E.end());
        memset(P, -1, sizeof(P));
        int cc = 0;
        for (auto X : E)
        {
                int w, v, u;
                tie(w, v, u) = X;
                v = Find(v);
                u = Find(u);
                if (v == u)
                        continue;
                tot += w * 2;
                Merge(v, u);
                cc ++;
        }
        assert(cc == k - 1);

        tot = tot + SM;
        return tot;

        /*while (vec.size() > 1 && vec[(int)vec.size() - 2].second >= st)
                tot += vec.back().first - vec[(int)vec.size() - 2].second, vec.pop_back();
        if (vec.size() && vec.back().first >= st)
                tot += vec.back().first - st, vec.pop_back();
        reverse(vec.begin(), vec.end());
        while (vec.size() > 1 && vec[(int)vec.size() - 2].first <= st)
                tot += vec[(int)vec.size() - 2].first - vec.back().second, vec.pop_back();
        if (vec.size() && vec.back().second <= st)
                tot += st - vec.back().second, vec.pop_back();
        if (vec.size())
        {
                assert(vec.size() == 1 && vec[0].first <= st && st <= vec[0].second);
                if (A[st] == st)
                {
                        int l = st;
                        while (l && A[l] == l)
                                l --;
                        assert(l >= vec[0].first);
                        int Best = st - l;
                        int r = st;
                        while (r <= n && A[r] == r)
                                r ++;
                        assert(r <= vec[0].second);
                        Best = min(Best, r - st);
                        tot += Best;
                }
        }

        tot = tot * 2 + SM;
        return tot;*/
}
# Verdict Execution time Memory Grader output
1 Correct 10 ms 16000 KB Output is correct
2 Correct 10 ms 16060 KB Output is correct
3 Correct 10 ms 16000 KB Output is correct
4 Correct 11 ms 16000 KB Output is correct
5 Correct 10 ms 16000 KB Output is correct
6 Correct 9 ms 16000 KB Output is correct
7 Correct 9 ms 16000 KB Output is correct
8 Correct 10 ms 16128 KB Output is correct
9 Correct 10 ms 16000 KB Output is correct
10 Correct 10 ms 16080 KB Output is correct
11 Correct 9 ms 16000 KB Output is correct
12 Correct 9 ms 16000 KB Output is correct
13 Correct 10 ms 16000 KB Output is correct
14 Correct 10 ms 16000 KB Output is correct
15 Correct 10 ms 16000 KB Output is correct
16 Correct 9 ms 16000 KB Output is correct
17 Correct 9 ms 16000 KB Output is correct
18 Correct 9 ms 16000 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 16000 KB Output is correct
2 Correct 10 ms 16060 KB Output is correct
3 Correct 10 ms 16000 KB Output is correct
4 Correct 11 ms 16000 KB Output is correct
5 Correct 10 ms 16000 KB Output is correct
6 Correct 9 ms 16000 KB Output is correct
7 Correct 9 ms 16000 KB Output is correct
8 Correct 10 ms 16128 KB Output is correct
9 Correct 10 ms 16000 KB Output is correct
10 Correct 10 ms 16080 KB Output is correct
11 Correct 9 ms 16000 KB Output is correct
12 Correct 9 ms 16000 KB Output is correct
13 Correct 10 ms 16000 KB Output is correct
14 Correct 10 ms 16000 KB Output is correct
15 Correct 10 ms 16000 KB Output is correct
16 Correct 9 ms 16000 KB Output is correct
17 Correct 9 ms 16000 KB Output is correct
18 Correct 9 ms 16000 KB Output is correct
19 Correct 10 ms 16128 KB Output is correct
20 Correct 10 ms 16128 KB Output is correct
21 Correct 10 ms 16128 KB Output is correct
22 Correct 10 ms 16128 KB Output is correct
23 Correct 11 ms 16256 KB Output is correct
24 Correct 10 ms 16128 KB Output is correct
25 Correct 10 ms 16128 KB Output is correct
26 Correct 10 ms 16128 KB Output is correct
27 Correct 11 ms 16176 KB Output is correct
28 Correct 10 ms 16128 KB Output is correct
29 Correct 10 ms 16128 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 16000 KB Output is correct
2 Correct 10 ms 16060 KB Output is correct
3 Correct 10 ms 16000 KB Output is correct
4 Correct 11 ms 16000 KB Output is correct
5 Correct 10 ms 16000 KB Output is correct
6 Correct 9 ms 16000 KB Output is correct
7 Correct 9 ms 16000 KB Output is correct
8 Correct 10 ms 16128 KB Output is correct
9 Correct 10 ms 16000 KB Output is correct
10 Correct 10 ms 16080 KB Output is correct
11 Correct 9 ms 16000 KB Output is correct
12 Correct 9 ms 16000 KB Output is correct
13 Correct 10 ms 16000 KB Output is correct
14 Correct 10 ms 16000 KB Output is correct
15 Correct 10 ms 16000 KB Output is correct
16 Correct 9 ms 16000 KB Output is correct
17 Correct 9 ms 16000 KB Output is correct
18 Correct 9 ms 16000 KB Output is correct
19 Correct 10 ms 16128 KB Output is correct
20 Correct 10 ms 16128 KB Output is correct
21 Correct 10 ms 16128 KB Output is correct
22 Correct 10 ms 16128 KB Output is correct
23 Correct 11 ms 16256 KB Output is correct
24 Correct 10 ms 16128 KB Output is correct
25 Correct 10 ms 16128 KB Output is correct
26 Correct 10 ms 16128 KB Output is correct
27 Correct 11 ms 16176 KB Output is correct
28 Correct 10 ms 16128 KB Output is correct
29 Correct 10 ms 16128 KB Output is correct
30 Runtime error 789 ms 159504 KB Execution killed with signal 11
31 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Runtime error 33 ms 32504 KB Execution killed with signal 11
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 10 ms 16000 KB Output is correct
2 Correct 10 ms 16060 KB Output is correct
3 Correct 10 ms 16000 KB Output is correct
4 Correct 11 ms 16000 KB Output is correct
5 Correct 10 ms 16000 KB Output is correct
6 Correct 9 ms 16000 KB Output is correct
7 Correct 9 ms 16000 KB Output is correct
8 Correct 10 ms 16128 KB Output is correct
9 Correct 10 ms 16000 KB Output is correct
10 Correct 10 ms 16080 KB Output is correct
11 Correct 9 ms 16000 KB Output is correct
12 Correct 9 ms 16000 KB Output is correct
13 Correct 10 ms 16000 KB Output is correct
14 Correct 10 ms 16000 KB Output is correct
15 Correct 10 ms 16000 KB Output is correct
16 Correct 9 ms 16000 KB Output is correct
17 Correct 9 ms 16000 KB Output is correct
18 Correct 9 ms 16000 KB Output is correct
19 Correct 10 ms 16128 KB Output is correct
20 Correct 10 ms 16128 KB Output is correct
21 Correct 10 ms 16128 KB Output is correct
22 Correct 10 ms 16128 KB Output is correct
23 Correct 11 ms 16256 KB Output is correct
24 Correct 10 ms 16128 KB Output is correct
25 Correct 10 ms 16128 KB Output is correct
26 Correct 10 ms 16128 KB Output is correct
27 Correct 11 ms 16176 KB Output is correct
28 Correct 10 ms 16128 KB Output is correct
29 Correct 10 ms 16128 KB Output is correct
30 Runtime error 789 ms 159504 KB Execution killed with signal 11
31 Halted 0 ms 0 KB -