#include <bits/stdc++.h>
using namespace std;
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;
#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize
const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};
#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif
#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "["; REP(i, v.size()) out << v[i] << ", "; out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}
// centroid decomposition of a biconnected component tree dafuq
// first only centoid decomp to pass those subtasks
template<typename T>
struct edge{
int src;
int dest;
T cost;
};
template<typename T>
class graph{
public:
vector<edge<T>> edges;
vector<vector<int>> adj;
int n;
graph(){};
graph(int _n){
n = _n;
adj.resize(n);
}
};
template<typename T>
class undigraph : public graph<T>{
public:
using graph<T>::edges;
using graph<T>::adj;
using graph<T>::n;
undigraph() : graph<T>(){};
undigraph(int _n) : graph<T>(_n){};
int add_edge(int src, int dest, T cost = 1){
int id = edges.size();
edges.push_back({src, dest, cost});
adj[src].push_back(id);
adj[dest].push_back(id);
return id;
}
};
struct bcc_decomposition{
graph<int> g;
vi bcc;
vi low, in;
vector<bool> isbridge;
int t = 0;
vi sz;
void init(){
bcc.resize(g.n, -1);
low.resize(g.n); in.resize(g.n, -1);
isbridge.resize(g.edges.size(), false);
sz.rsz(g.n, 0);
}
void get_bridges(int v, int p){
in[v] = t++;
low[v] = INF;
for(int id : g.adj[v]){
edge<int> e = g.edges[id];
int other = e.src ^ e.dest ^ v;
if(other == p) continue;
if(in[other] == -1){
get_bridges(other, v);
if(low[other] > in[v]){
isbridge[id] = true;
}
low[v] = min(low[v], low[other]);
}
else if(in[v] > in[other]){
low[v] = min(low[v], in[other]);
}
}
}
int cnt = 0;
void decompose(){
REP(i, g.n){
if(in[i] == -1) get_bridges(i, -1);
}
function<void(int)> dfs = [&](int v){
bcc[v] = cnt;
for(int id : g.adj[v]){
if(isbridge[id]) continue;
edge<int> e = g.edges[id];
int other = e.src ^ e.dest ^ v;
if(bcc[other] == -1) dfs(other);
}
};
REP(i, g.n){
if(bcc[i] == -1){
dfs(i);
++cnt;
}
}
REP(i, g.n) sz[bcc[i]]++;
}
};
struct AcAutomaton{
int n, m;
undigraph<int> g2;
undigraph<int> g;
bcc_decomposition bccd;
void read_in(){
cin >> n >> m;
g2 = undigraph<int>(n);
REP(i, m){
pii e; cin >> e;
e.ff--; e.ss--;
g2.add_edge(e.ff, e.ss);
}
}
ll ans = 0;
vi sz;
vi roots;
void get_sz(){
sz.resize(g.n);
vector<bool> visited(g.n, false);
function<void(int, int)> dfs = [&](int v, int p){
sz[v] = bccd.sz[v];
visited[v] = true;
for(int id : g.adj[v]){
edge<int> e = g.edges[id];
int other = e.src ^ e.dest ^ v;
if(other != p){
dfs(other, v);
sz[v] += sz[other];
}
}
};
REP(i, g.n){
if(!visited[i]){
roots.pb(i);
dfs(i, -1);
}
}
}
void reroot(int v, int p){
if(p != -1){
sz[p] -= sz[v];
sz[v] += sz[p];
}
// process;
vll children;
for(int id : g.adj[v]){
edge<int> e = g.edges[id];
int other = e.src ^ e.dest ^ v;
children.pb(sz[other]);
}
for(ll x : children){
ans -= ((ll)bccd.sz[v] - 1)*(x + 1)*x;
ans -= x*(x-1);
}
children.clear();
for(int id : g.adj[v]){
edge<int> e = g.edges[id];
int other = e.src ^ e.dest ^ v;
if(other != p) reroot(other, v);
}
if(p != -1){
sz[v] -= sz[p];
sz[p] += sz[v];
}
}
void solve(){
ans += ((ll)g2.n * ((ll)g2.n -1) * ((ll)g2.n-2));
bccd.g = g2;
bccd.init();
bccd.decompose();
g = undigraph<int> (bccd.cnt);
set<int> added;
REP(i, g2.n){
for(int id : g2.adj[i]){
edge<int> e = g2.edges[id];
int other = e.src ^ e.dest ^ i;
if(bccd.bcc[i] == bccd.bcc[other]) continue;
if(added.find(id) != added.end()) continue;
added.insert(id);
g.add_edge(bccd.bcc[i], bccd.bcc[other]);
}
}
get_sz();
for(auto x : roots) reroot(x, -1);
cout << ans << endl;
}
};
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL);
int tcase = 1;
while(tcase--){
AcAutomaton solver;
solver.read_in();
solver.solve();
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
384 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
384 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
138 ms |
24620 KB |
Output is correct |
2 |
Correct |
126 ms |
24620 KB |
Output is correct |
3 |
Incorrect |
211 ms |
27564 KB |
Output isn't correct |
4 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
640 KB |
Output is correct |
2 |
Correct |
2 ms |
640 KB |
Output is correct |
3 |
Correct |
2 ms |
640 KB |
Output is correct |
4 |
Correct |
2 ms |
768 KB |
Output is correct |
5 |
Correct |
2 ms |
640 KB |
Output is correct |
6 |
Correct |
2 ms |
640 KB |
Output is correct |
7 |
Correct |
2 ms |
640 KB |
Output is correct |
8 |
Correct |
2 ms |
640 KB |
Output is correct |
9 |
Correct |
2 ms |
640 KB |
Output is correct |
10 |
Incorrect |
2 ms |
768 KB |
Output isn't correct |
11 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
307 ms |
27180 KB |
Output is correct |
2 |
Correct |
321 ms |
27180 KB |
Output is correct |
3 |
Correct |
295 ms |
27180 KB |
Output is correct |
4 |
Correct |
303 ms |
27180 KB |
Output is correct |
5 |
Correct |
310 ms |
27180 KB |
Output is correct |
6 |
Correct |
343 ms |
35500 KB |
Output is correct |
7 |
Correct |
340 ms |
33052 KB |
Output is correct |
8 |
Correct |
335 ms |
31404 KB |
Output is correct |
9 |
Correct |
336 ms |
30124 KB |
Output is correct |
10 |
Incorrect |
289 ms |
27180 KB |
Output isn't correct |
11 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
640 KB |
Output is correct |
2 |
Correct |
2 ms |
640 KB |
Output is correct |
3 |
Incorrect |
1 ms |
512 KB |
Output isn't correct |
4 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
312 ms |
27252 KB |
Output is correct |
2 |
Correct |
312 ms |
27132 KB |
Output is correct |
3 |
Incorrect |
250 ms |
23980 KB |
Output isn't correct |
4 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
384 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
384 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |