Submission #287427

# Submission time Handle Problem Language Result Execution time Memory
287427 2020-08-31T16:57:38 Z ACmachine Circle selection (APIO18_circle_selection) C++17
19 / 100
3000 ms 82764 KB
#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;

typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;

#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 

const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};

#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif

#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}


struct circle{
    pii mid; 
    int r;
    int id;
    circle(pii _mid, int _r, int _id){
        mid = _mid; r = _r; id = _id;
    }
    bool intersect(circle &other){
        ll dist = (ll)(mid.ff - other.mid.ff)*(mid.ff - other.mid.ff) + (ll)(mid.ss - other.mid.ss)*(mid.ss - other.mid.ss);
        ll radsum = r + other.r;
        radsum *= radsum;
        return radsum >= dist;
    }
};

struct hash_pair{
    size_t operator()(const pair<int, int>& p) const
    {
        auto hsh1 = hash<int>{}(p.ff);
        auto hsh2 = hash<int>{}(p.ss);
        return hsh1 ^ hsh2;
    }
};
bool operator<(const circle &lhs, const circle &rhs){
    if(lhs.r == rhs.r) return lhs.id < rhs.id;
    return lhs.r > rhs.r; 
}
struct AcAutomaton{
    int n; 
    vi out;
    vector<circle> circles;
    unordered_map<pii, unordered_set<int>, hash_pair> grid;
    vector<bool> removed;
	void read_in(){
		cin >> n;
        out.rsz(n, -1);
        removed.rsz(n, false);
        REP(i, n){
            pii mid; int r; cin >> mid >> r;
            circles.pb(circle(mid, r, i));
        }
	}
    void rescale(int square_size){
        grid.clear();
        REP(i, n){
            if(!removed[i]){
                circle c = circles[i];
                pii newmid = mp(c.mid.ff / square_size, c.mid.ss / square_size);
                grid[newmid].insert(i);
            }
        }
    }
	void solve(){
		set<circle> pq;
        REP(i, circles.size()) pq.insert(circles[i]);
        int square_size = pq.begin()->r;
        rescale(square_size);
        vector<circle> circles_sorted = circles;
        sort(all(circles_sorted));
        for(circle c : circles_sorted){
            if(removed[c.id]) continue;
            if(c.r <= square_size / 2){
                square_size = c.r;
                rescale(square_size);
            }
            pii newmid = mp(c.mid.ff / square_size, c.mid.ss / square_size);
            vi toerase;
            FOR(i, newmid.ff - 2, newmid.ff + 3, 1){
                FOR(j, newmid.ss - 2, newmid.ss + 3, 1){
                    if(grid.find(mp(i, j)) == grid.end()) continue;
                    toerase.clear();
                    for(int c2id : grid[mp(i, j)]){
                        circle c2 = circles[c2id];
                        if(c.intersect(c2)){
                            out[c2.id] = c.id;
                            removed[c2.id] = true;
                            toerase.pb(c2.id); 
                        }
                    }
                    for(auto x : toerase) grid[mp(i, j)].erase(x);
                }
            }
        }
        /* while(!pq.empty()){ */
        /*     circle c = *pq.begin(); */
        /*     if(c.r <= square_size/2) { */
        /*         square_size = c.r; */
        /*         rescale(square_size); */
        /*     } */
        /*     pii newmid = mp(c.mid.ff / square_size, c.mid.ss / square_size); */
        /*     FOR(i, newmid.ff - 2, newmid.ff + 3, 1){ */
        /*         FOR(j, newmid.ss - 2, newmid.ss + 3, 1){ */
        /*             if(grid.find(mp(i, j)) == grid.end()) continue; */
        /*             for(int c2id : grid[mp(i, j)]){ */
        /*                 if(removed[c2id]) continue; */
        /*                 circle c2 = circles[c2id]; */
        /*                 if(c.intersect(c2)){ */
        /*                     out[c2.id] = c.id; */
        /*                     removed[c2.id] = true; */
        /*                     pq.erase(c2); */
        /*                 } */
        /*             } */
        /*         } */
        /*     } */
        /* } */
        REP(i, n) cout << out[i]+1 << (i == n - 1 ? "\n" : " ");
	}
};
    
int main(){
 	ios_base::sync_with_stdio(false);
 	cin.tie(NULL); cout.tie(NULL);
	int tcase = 1;
	while(tcase--){
		AcAutomaton solver;
		solver.read_in();
		solver.solve();
	}
    return 0;
}

Compilation message

circle_selection.cpp: In member function 'void AcAutomaton::solve()':
circle_selection.cpp:26:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<circle>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   26 | #define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
      |                                        ^
circle_selection.cpp:28:18: note: in expansion of macro 'FOR'
   28 | #define REP(i,b) FOR(i,0,b,1)
      |                  ^~~
circle_selection.cpp:138:9: note: in expansion of macro 'REP'
  138 |         REP(i, circles.size()) pq.insert(circles[i]);
      |         ^~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 384 KB Output is correct
2 Correct 0 ms 384 KB Output is correct
3 Correct 0 ms 384 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 0 ms 384 KB Output is correct
8 Correct 0 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 1 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 384 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 2 ms 512 KB Output is correct
17 Correct 1 ms 512 KB Output is correct
18 Correct 1 ms 512 KB Output is correct
19 Correct 5 ms 1152 KB Output is correct
20 Correct 6 ms 1152 KB Output is correct
21 Correct 6 ms 1152 KB Output is correct
22 Correct 11 ms 1664 KB Output is correct
23 Correct 13 ms 1664 KB Output is correct
24 Correct 11 ms 1664 KB Output is correct
25 Correct 12 ms 1664 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 490 ms 46852 KB Output is correct
2 Correct 519 ms 43604 KB Output is correct
3 Correct 532 ms 45908 KB Output is correct
4 Correct 433 ms 46676 KB Output is correct
5 Correct 522 ms 45396 KB Output is correct
6 Correct 919 ms 62368 KB Output is correct
7 Correct 657 ms 46548 KB Output is correct
8 Correct 712 ms 49620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1484 ms 27440 KB Output is correct
3 Execution timed out 3049 ms 80724 KB Time limit exceeded
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1554 ms 82744 KB Output is correct
2 Correct 1308 ms 82764 KB Output is correct
3 Execution timed out 3087 ms 52436 KB Time limit exceeded
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 384 KB Output is correct
2 Correct 0 ms 384 KB Output is correct
3 Correct 0 ms 384 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 0 ms 384 KB Output is correct
8 Correct 0 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 1 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 384 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 2 ms 512 KB Output is correct
17 Correct 1 ms 512 KB Output is correct
18 Correct 1 ms 512 KB Output is correct
19 Correct 5 ms 1152 KB Output is correct
20 Correct 6 ms 1152 KB Output is correct
21 Correct 6 ms 1152 KB Output is correct
22 Correct 11 ms 1664 KB Output is correct
23 Correct 13 ms 1664 KB Output is correct
24 Correct 11 ms 1664 KB Output is correct
25 Correct 12 ms 1664 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 10 ms 1788 KB Output is correct
28 Correct 11 ms 1916 KB Output is correct
29 Correct 11 ms 1916 KB Output is correct
30 Correct 28 ms 3068 KB Output is correct
31 Correct 24 ms 3068 KB Output is correct
32 Correct 30 ms 3068 KB Output is correct
33 Correct 145 ms 15416 KB Output is correct
34 Correct 142 ms 15964 KB Output is correct
35 Correct 147 ms 14572 KB Output is correct
36 Correct 520 ms 27372 KB Output is correct
37 Correct 606 ms 27416 KB Output is correct
38 Correct 748 ms 27404 KB Output is correct
39 Execution timed out 3095 ms 25068 KB Time limit exceeded
40 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 384 KB Output is correct
2 Correct 0 ms 384 KB Output is correct
3 Correct 0 ms 384 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 0 ms 384 KB Output is correct
8 Correct 0 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 1 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 384 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 2 ms 512 KB Output is correct
17 Correct 1 ms 512 KB Output is correct
18 Correct 1 ms 512 KB Output is correct
19 Correct 5 ms 1152 KB Output is correct
20 Correct 6 ms 1152 KB Output is correct
21 Correct 6 ms 1152 KB Output is correct
22 Correct 11 ms 1664 KB Output is correct
23 Correct 13 ms 1664 KB Output is correct
24 Correct 11 ms 1664 KB Output is correct
25 Correct 12 ms 1664 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 490 ms 46852 KB Output is correct
28 Correct 519 ms 43604 KB Output is correct
29 Correct 532 ms 45908 KB Output is correct
30 Correct 433 ms 46676 KB Output is correct
31 Correct 522 ms 45396 KB Output is correct
32 Correct 919 ms 62368 KB Output is correct
33 Correct 657 ms 46548 KB Output is correct
34 Correct 712 ms 49620 KB Output is correct
35 Correct 1 ms 384 KB Output is correct
36 Correct 1484 ms 27440 KB Output is correct
37 Execution timed out 3049 ms 80724 KB Time limit exceeded
38 Halted 0 ms 0 KB -