Submission #287422

# Submission time Handle Problem Language Result Execution time Memory
287422 2020-08-31T16:54:16 Z ACmachine Circle selection (APIO18_circle_selection) C++17
42 / 100
3000 ms 71640 KB
#include <bits/stdc++.h>
using namespace std;

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<typename T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using ordered_map = tree<T, U, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

typedef long long ll;
typedef long double ld;
typedef double db;
typedef string str;

typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<str> vstr;

#define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
#define FORD(i,j,k,in) for(int i=(j); i >=(k);i-=in)
#define REP(i,b) FOR(i,0,b,1)
#define REPD(i,b) FORD(i,b,0,1)
#define pb push_back 
#define mp make_pair
#define ff first
#define ss second
#define all(x) begin(x), end(x)
#define rsz resize 

const double EPS = 1e-9;
const int MOD = 1e9+7; // 998244353;
const ll INFF = 1e18;
const int INF = 1e9;
const ld PI = acos((ld)-1);
const vi dy = {1, 0, -1, 0, -1, 1, 1, -1};
const vi dx = {0, 1, 0, -1, -1, 1, -1, 1};

#ifdef DEBUG
#define DBG if(1)
#else
#define DBG if(0)
#endif

#define dbg(x) cout << "(" << #x << " : " << x << ")" << endl;
// ostreams
template <class T, class U>
ostream& operator<<(ostream& out, const pair<T, U> &par) {out << "[" << par.first << ";" << par.second << "]"; return out;}
template <class T>
ostream& operator<<(ostream& out, const set<T> &cont) { out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template <class T, class U>
ostream& operator<<(ostream& out, const map<T, U> &cont) {out << "{"; for( const auto &x:cont) out << x << ", "; out << "}"; return out; }
template<class T>
ostream& operator<<(ostream& out, const vector<T> &v){ out << "[";  REP(i, v.size()) out << v[i] << ", ";  out << "]"; return out;}
// istreams
template<class T>
istream& operator>>(istream& in, vector<T> &v){ for(auto &x : v) in >> x; return in; }
template<class T, class U>
istream& operator>>(istream& in, pair<T, U> &p){ in >> p.ff >> p.ss; return in; }
//searches
template<typename T, typename U>
T bsl(T lo, T hi, U f){ hi++; T mid; while(lo < hi){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
template<typename U>
double bsld(double lo, double hi, U f, double p = 1e-9){ int r = 3 + (int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? hi = mid : lo = mid; } return (lo + hi)/2; }
template<typename T, typename U>
T bsh(T lo, T hi, U f){ lo--; T mid; while(lo < hi){ mid = (lo + hi + 1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
template<typename U>
double bshd(double lo, double hi, U f, double p = 1e-9){ int r = 3+(int)log2((hi - lo)/p); double mid; while(r--){ mid = (lo + hi)/2; f(mid) ? lo = mid : hi = mid; } return (lo + hi)/2; }
// some more utility functions
template<typename T>
pair<T, int> get_min(vector<T> &v){ typename vector<T> :: iterator it = min_element(v.begin(), v.end()); return mp(*it, it - v.begin());}
template<typename T>
pair<T, int> get_max(vector<T> &v){ typename vector<T> :: iterator it = max_element(v.begin(), v.end()); return mp(*it, it - v.begin());}        
template<typename T> bool ckmin(T& a, const T& b){return b < a ? a = b , true : false;}
template<typename T> bool ckmax(T& a, const T& b){return b > a ? a = b, true : false;}


struct circle{
    pii mid; 
    int r;
    int id;
    circle(pii _mid, int _r, int _id){
        mid = _mid; r = _r; id = _id;
    }
    bool intersect(circle &other){
        ll dist = (ll)(mid.ff - other.mid.ff)*(mid.ff - other.mid.ff) + (ll)(mid.ss - other.mid.ss)*(mid.ss - other.mid.ss);
        ll radsum = r + other.r;
        radsum *= radsum;
        return radsum >= dist;
    }
};

struct hash_pair{
    size_t operator()(const pair<int, int>& p) const
    {
        auto hsh1 = hash<int>{}(p.ff);
        auto hsh2 = hash<int>{}(p.ss);
        return hsh1 ^ hsh2;
    }
};
bool operator<(const circle &lhs, const circle &rhs){
    if(lhs.r == rhs.r) return lhs.id < rhs.id;
    return lhs.r > rhs.r; 
}
struct AcAutomaton{
    int n; 
    vi out;
    vector<circle> circles;
    unordered_map<pii, vi, hash_pair> grid;
    vector<bool> removed;
	void read_in(){
		cin >> n;
        out.rsz(n, -1);
        removed.rsz(n, false);
        REP(i, n){
            pii mid; int r; cin >> mid >> r;
            circles.pb(circle(mid, r, i));
        }
	}
    void rescale(int square_size){
        grid.clear();
        REP(i, n){
            if(!removed[i]){
                circle c = circles[i];
                pii newmid = mp(c.mid.ff / square_size, c.mid.ss / square_size);
                grid[newmid].pb(i);
            }
        }
    }
	void solve(){
		set<circle> pq;
        REP(i, circles.size()) pq.insert(circles[i]);
        int square_size = pq.begin()->r;
        rescale(square_size);
        vector<circle> circles_sorted = circles;
        sort(all(circles_sorted));
        for(circle c : circles_sorted){
            if(removed[c.id]) continue;
            if(c.r <= square_size / 2){
                square_size = c.r;
                rescale(square_size);
            }
            pii newmid = mp(c.mid.ff / square_size, c.mid.ss / square_size);
            FOR(i, newmid.ff - 2, newmid.ff + 3, 1){
                FOR(j, newmid.ss - 2, newmid.ss + 3, 1){
                    if(grid.find(mp(i, j)) == grid.end()) continue;
                    for(int c2id : grid[mp(i, j)]){
                        if(removed[c2id]) continue;
                        circle c2 = circles[c2id];
                        if(c.intersect(c2)){
                            out[c2.id] = c.id;
                            removed[c2.id] = true;
                        }
                    }
                }
            }
        }
        /* while(!pq.empty()){ */
        /*     circle c = *pq.begin(); */
        /*     if(c.r <= square_size/2) { */
        /*         square_size = c.r; */
        /*         rescale(square_size); */
        /*     } */
        /*     pii newmid = mp(c.mid.ff / square_size, c.mid.ss / square_size); */
        /*     FOR(i, newmid.ff - 2, newmid.ff + 3, 1){ */
        /*         FOR(j, newmid.ss - 2, newmid.ss + 3, 1){ */
        /*             if(grid.find(mp(i, j)) == grid.end()) continue; */
        /*             for(int c2id : grid[mp(i, j)]){ */
        /*                 if(removed[c2id]) continue; */
        /*                 circle c2 = circles[c2id]; */
        /*                 if(c.intersect(c2)){ */
        /*                     out[c2.id] = c.id; */
        /*                     removed[c2.id] = true; */
        /*                     pq.erase(c2); */
        /*                 } */
        /*             } */
        /*         } */
        /*     } */
        /* } */
        REP(i, n) cout << out[i]+1 << (i == n - 1 ? "\n" : " ");
	}
};
    
int main(){
 	ios_base::sync_with_stdio(false);
 	cin.tie(NULL); cout.tie(NULL);
	int tcase = 1;
	while(tcase--){
		AcAutomaton solver;
		solver.read_in();
		solver.solve();
	}
    return 0;
}

Compilation message

circle_selection.cpp: In member function 'void AcAutomaton::solve()':
circle_selection.cpp:26:40: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<circle>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   26 | #define FOR(i,j,k,in) for(int i=(j); i < (k);i+=in)
      |                                        ^
circle_selection.cpp:28:18: note: in expansion of macro 'FOR'
   28 | #define REP(i,b) FOR(i,0,b,1)
      |                  ^~~
circle_selection.cpp:138:9: note: in expansion of macro 'REP'
  138 |         REP(i, circles.size()) pq.insert(circles[i]);
      |         ^~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 0 ms 384 KB Output is correct
3 Correct 0 ms 384 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 0 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 384 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 1 ms 512 KB Output is correct
17 Correct 2 ms 640 KB Output is correct
18 Correct 1 ms 512 KB Output is correct
19 Correct 5 ms 1024 KB Output is correct
20 Correct 5 ms 1024 KB Output is correct
21 Correct 5 ms 1024 KB Output is correct
22 Correct 9 ms 1536 KB Output is correct
23 Correct 11 ms 1536 KB Output is correct
24 Correct 9 ms 1536 KB Output is correct
25 Correct 10 ms 1536 KB Output is correct
26 Correct 10 ms 1536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 450 ms 36240 KB Output is correct
2 Correct 449 ms 35028 KB Output is correct
3 Correct 439 ms 35028 KB Output is correct
4 Correct 450 ms 36480 KB Output is correct
5 Correct 391 ms 35668 KB Output is correct
6 Correct 709 ms 48980 KB Output is correct
7 Correct 414 ms 37076 KB Output is correct
8 Correct 464 ms 39252 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1063 ms 22240 KB Output is correct
3 Execution timed out 3089 ms 63068 KB Time limit exceeded
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1280 ms 65120 KB Output is correct
2 Correct 1086 ms 65108 KB Output is correct
3 Correct 2993 ms 42196 KB Output is correct
4 Correct 1085 ms 71380 KB Output is correct
5 Correct 1104 ms 71640 KB Output is correct
6 Correct 467 ms 43608 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 0 ms 384 KB Output is correct
3 Correct 0 ms 384 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 0 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 384 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 1 ms 512 KB Output is correct
17 Correct 2 ms 640 KB Output is correct
18 Correct 1 ms 512 KB Output is correct
19 Correct 5 ms 1024 KB Output is correct
20 Correct 5 ms 1024 KB Output is correct
21 Correct 5 ms 1024 KB Output is correct
22 Correct 9 ms 1536 KB Output is correct
23 Correct 11 ms 1536 KB Output is correct
24 Correct 9 ms 1536 KB Output is correct
25 Correct 10 ms 1536 KB Output is correct
26 Correct 10 ms 1536 KB Output is correct
27 Correct 9 ms 1788 KB Output is correct
28 Correct 10 ms 1788 KB Output is correct
29 Correct 9 ms 1788 KB Output is correct
30 Correct 22 ms 2684 KB Output is correct
31 Correct 21 ms 2684 KB Output is correct
32 Correct 24 ms 2684 KB Output is correct
33 Correct 117 ms 12780 KB Output is correct
34 Correct 115 ms 12908 KB Output is correct
35 Correct 122 ms 12652 KB Output is correct
36 Correct 384 ms 22368 KB Output is correct
37 Correct 418 ms 22380 KB Output is correct
38 Correct 573 ms 22380 KB Output is correct
39 Execution timed out 3012 ms 20220 KB Time limit exceeded
40 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 0 ms 384 KB Output is correct
3 Correct 0 ms 384 KB Output is correct
4 Correct 1 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Correct 1 ms 384 KB Output is correct
8 Correct 1 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 0 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 384 KB Output is correct
13 Correct 1 ms 384 KB Output is correct
14 Correct 1 ms 384 KB Output is correct
15 Correct 1 ms 384 KB Output is correct
16 Correct 1 ms 512 KB Output is correct
17 Correct 2 ms 640 KB Output is correct
18 Correct 1 ms 512 KB Output is correct
19 Correct 5 ms 1024 KB Output is correct
20 Correct 5 ms 1024 KB Output is correct
21 Correct 5 ms 1024 KB Output is correct
22 Correct 9 ms 1536 KB Output is correct
23 Correct 11 ms 1536 KB Output is correct
24 Correct 9 ms 1536 KB Output is correct
25 Correct 10 ms 1536 KB Output is correct
26 Correct 10 ms 1536 KB Output is correct
27 Correct 450 ms 36240 KB Output is correct
28 Correct 449 ms 35028 KB Output is correct
29 Correct 439 ms 35028 KB Output is correct
30 Correct 450 ms 36480 KB Output is correct
31 Correct 391 ms 35668 KB Output is correct
32 Correct 709 ms 48980 KB Output is correct
33 Correct 414 ms 37076 KB Output is correct
34 Correct 464 ms 39252 KB Output is correct
35 Correct 1 ms 384 KB Output is correct
36 Correct 1063 ms 22240 KB Output is correct
37 Execution timed out 3089 ms 63068 KB Time limit exceeded
38 Halted 0 ms 0 KB -