Submission #283998

#TimeUsernameProblemLanguageResultExecution timeMemory
283998BertedLong Distance Coach (JOI17_coach)C++14
100 / 100
171 ms18648 KiB
#include <iostream> #include <vector> #include <algorithm> #include <cmath> #define ll long long #define pii pair<ll, ll> #define fst first #define snd second #define ppi pair<ll, pii> using namespace std; /* Solution : Due to the existence of the driver, therefore we cannot remove cyclically i.e. 6, 7, 0, 1, 2 Therefore, we can only remove "segments" at a time. Obs. 2: In each removal, it will be optimal to not "jump through" segments i.e. removal 1 removes 2, removal 2 removes 1,3 (this is not optimal) As if removal 1 is better than removal 2, it is optimal to place 1 in removal 1 on the other hand, therefore it is optimal to place 2 in removal 2. Therefore, we can solve it with a single state DP with O(N) transition (71 points) To get AC, optimize DP with CHT */ const ll INF = 5e18; ll x, w, t, s[200051], pref[200051], v[200051], dp[200051], res; int n, m; pii d[200051]; vector<pii> lines; vector<ll> val; inline bool check(pii l1, pii l2, pii l3) { return (long double)(l2.snd - l1.snd) / (l1.fst - l2.fst) >= (long double)(l3.snd - l2.snd) / (l2.fst - l3.fst); } inline ll getX(pii l1, pii l2) { return ceill((long double)(l2.snd - l1.snd) / (l1.fst - l2.fst)); } int main() { ios :: sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> x >> n >> m >> w >> t; s[0] = 0; for (int i = 1; i <= n; i++) {cin >> s[i];} s[n + 1] = x; for (int i = 1; i <= m; i++) {cin >> d[i].fst >> d[i].snd; v[i] = INF;} sort(s, s + n + 2); sort(d + 1, d + m + 1); res += w * (s[n + 1] / t + 1); for (int i = 1; i <= m; i++) { pref[i] = d[i].snd; if (s[n + 1] >= d[i].fst) { pref[i] -= w * ((s[n + 1] - d[i].fst) / t + 1); res += w * ((s[n + 1] - d[i].fst) / t + 1); } pref[i] += pref[i - 1]; } for (int i = 1; i <= n + 1; i++) { if (s[i] % t > d[1].fst) { int idx = upper_bound(d + 1, d + m + 1, make_pair(s[i] % t, -1LL)) - d - 1; if (v[idx] == INF && (s[i] - s[i - 1] >= t || s[i - 1] % t > s[i] % t || (s[i - 1] % t < d[idx].fst && d[idx].fst < s[i] % t))) { v[idx] = w * (s[i] / t); } } } dp[0] = 0; lines.push_back({0, 0}); val.push_back(-INF); for (int i = 1; i <= m; i++) { int idx = prev(upper_bound(val.begin(), val.end(), v[i])) - val.begin(); if (v[i] < INF) { dp[i] = min(dp[i - 1], pref[i] + i * v[i] + lines[idx].fst * v[i] + lines[idx].snd); } else {dp[i] = dp[i - 1];} pii nl = {-i, dp[i] - pref[i]}; while (lines.size() > 1 && check(lines[lines.size() - 2], lines.back(), nl)) {lines.pop_back(); val.pop_back();} val.push_back(getX(lines.back(), nl)); lines.push_back(nl); } cout << res + dp[m] << "\n"; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...