Submission #283478

# Submission time Handle Problem Language Result Execution time Memory
283478 2020-08-25T20:13:56 Z doowey Magic Tree (CEOI19_magictree) C++14
22 / 100
1097 ms 1048580 KB
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef pair<int, ll> pii;

#define fi first
#define se second
#define mp make_pair
#define fastIO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);

const int N = (int)1e5 + 10;
vector<int> T[N];

struct Node{
    ll val;
    ll lazy;
};

Node G[N * 4 + 512];

void push(int node, int cl, int cr){
    G[node].val += G[node].lazy;
    if(cl != cr){
        G[node * 2].lazy += G[node].lazy;
        G[node * 2 + 1].lazy += G[node].lazy;
    }
    G[node].lazy = 0;
}

void upd(int node, int cl, int cr, int tl, int tr, ll v){
    push(node, cl, cr);
    if(cr < tl || cl > tr) return;
    if(cl >= tl && cr <= tr){
        G[node].lazy = v;
        push(node, cl, cr);
        return;
    }
    int mid = (cl + cr) / 2;
    upd(node * 2, cl, mid, tl, tr, v);
    upd(node * 2 + 1, mid + 1, cr, tl, tr, v);
    G[node].val = max(G[node * 2].val, G[node * 2 + 1].val);
}

ll get(int node, int cl, int cr, int tl, int tr){
    push(node, cl, cr);
    if(cr < tl || cl > tr)
        return 0ll;
    if(cl >= tl && cr <= tr){
        return G[node].val;
    }
    int mid = (cl + cr) / 2;
    return max(get(node * 2, cl, mid, tl, tr), get(node * 2 + 1, mid + 1, cr, tl, tr));
}

int k;

int sub[N];

void dfs(int u){
    sub[u] = 1;
    for(auto x : T[u]){
        dfs(x);
        sub[u] += sub[x];
    }
}

set<int> ff[N];
set<pii> res[N];
int tr[N], ww[N];

struct R{
    int lef;
    int rig;
    ll ch;
};

vector<R> rev[N];

void dfs1(int u, bool keep){
    int id = -1;
    for(auto x : T[u]){
        if(id == -1 || sub[x] > sub[id])
            id = x;
    }
    for(auto x : T[u]){
        if(x != id){
            dfs1(x, false);
            for(auto y : ff[x]){
                ff[u].insert(y);
            }
            ff[x].clear();
        }
    }
    if(id != -1){
        dfs1(id, true);
        swap(ff[u], ff[id]);
        for(auto y : ff[id]){
            ff[u].insert(y);
        }
        ff[id].clear();
        swap(rev[u], rev[id]);
    }
    for(auto x : T[u]){
        if(x != id){
            int las = 0;
            ll cv = -1;
            for(auto y : res[x]){
                if(las != 0){
                    upd(1, 1, k, las, y.fi - 1, y.se);
                    rev[u].push_back({las, y.fi - 1, y.se});
                }
                las = y.fi;
                cv = y.se;
            }
            if(las != 0){
                upd(1, 1, k, las, k, cv);
                rev[u].push_back({las, k, cv});
            }
        }
    }
    if(tr[u] > 0){
        ff[u].insert(tr[u]);
        auto it = ff[u].lower_bound(tr[u]);
        ll upd_val = get(1, 1, k, tr[u], tr[u]) + ww[u];
        int en;
        ll cur;
        int st;
        while(it != ff[u].end()){
            st = (*it);
            cur = get(1, 1, k, st, st);
            if(upd_val > cur){
                auto nx = ff[u].erase(it);
                if(nx == ff[u].end())
                    en = k;
                else
                    en = (*nx) - 1;
                upd(1, 1, k, st, en, upd_val - cur);
                rev[u].push_back({st, en, upd_val - cur});
                it = nx;
            }
            else{
                break;
            }
        }
        ff[u].insert(tr[u]);
    }
    if(!keep){
        for(auto x : ff[u]){
            res[u].insert(mp(x, get(1, 1, k, x, x)));
        }
        for(auto f : rev[u]){
            upd(1, 1, k, f.lef, f.rig, -f.ch);
        }
        rev[u].clear();
    }
}

vector<int> sol[N];

void brute(int x){
    sol[x].resize(k);
    for(auto p : T[x]){
        brute(p);
        for(int t = 0;t < k ;t ++ )
            sol[x][t] += sol[p][t];
    }
    if(tr[x] == 0) return;
    int ts = tr[x] - 1;
    int vl = sol[x][ts] + ww[x];
    for(int j = ts; j < k ; j ++ ){
        sol[x][j] = max(sol[x][j], vl);
    }

}

int main(){
    fastIO;
    int n, m;
    cin >> n >> m >> k;
    int p;
    for(int i = 2; i <= n; i ++ ){
        cin >> p;
        T[p].push_back(i);
    }
    int id;
    for(int i = 1; i <= m ; i ++ ){
        cin >> id >> tr[id] >> ww[id];
    }
    dfs(1);
    dfs1(1, true);
    brute(1);
    cout << sol[1][k-1] << "\n";
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 11 ms 16768 KB Output is correct
2 Correct 10 ms 16768 KB Output is correct
3 Correct 10 ms 16768 KB Output is correct
4 Correct 11 ms 16768 KB Output is correct
5 Correct 12 ms 16768 KB Output is correct
6 Correct 11 ms 16768 KB Output is correct
7 Correct 11 ms 16768 KB Output is correct
8 Correct 11 ms 16768 KB Output is correct
9 Correct 11 ms 16768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 1097 ms 1048580 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 20 ms 20992 KB Output is correct
2 Correct 19 ms 20992 KB Output is correct
3 Correct 19 ms 20992 KB Output is correct
4 Runtime error 797 ms 1048580 KB Execution killed with signal 9
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 200 ms 32376 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 11 ms 16768 KB Output is correct
2 Correct 10 ms 16768 KB Output is correct
3 Correct 10 ms 16768 KB Output is correct
4 Correct 11 ms 16768 KB Output is correct
5 Correct 12 ms 16768 KB Output is correct
6 Correct 11 ms 16768 KB Output is correct
7 Correct 11 ms 16768 KB Output is correct
8 Correct 11 ms 16768 KB Output is correct
9 Correct 11 ms 16768 KB Output is correct
10 Correct 297 ms 43512 KB Output is correct
11 Correct 258 ms 37056 KB Output is correct
12 Correct 160 ms 41188 KB Output is correct
13 Correct 122 ms 38764 KB Output is correct
14 Correct 125 ms 49128 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 777 ms 1048580 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 11 ms 16768 KB Output is correct
2 Correct 10 ms 16768 KB Output is correct
3 Correct 10 ms 16768 KB Output is correct
4 Correct 11 ms 16768 KB Output is correct
5 Correct 12 ms 16768 KB Output is correct
6 Correct 11 ms 16768 KB Output is correct
7 Correct 11 ms 16768 KB Output is correct
8 Correct 11 ms 16768 KB Output is correct
9 Correct 11 ms 16768 KB Output is correct
10 Correct 20 ms 20992 KB Output is correct
11 Correct 19 ms 20992 KB Output is correct
12 Correct 19 ms 20992 KB Output is correct
13 Runtime error 797 ms 1048580 KB Execution killed with signal 9
14 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 11 ms 16768 KB Output is correct
2 Correct 10 ms 16768 KB Output is correct
3 Correct 10 ms 16768 KB Output is correct
4 Correct 11 ms 16768 KB Output is correct
5 Correct 12 ms 16768 KB Output is correct
6 Correct 11 ms 16768 KB Output is correct
7 Correct 11 ms 16768 KB Output is correct
8 Correct 11 ms 16768 KB Output is correct
9 Correct 11 ms 16768 KB Output is correct
10 Runtime error 1097 ms 1048580 KB Execution killed with signal 9
11 Halted 0 ms 0 KB -