Submission #267020

# Submission time Handle Problem Language Result Execution time Memory
267020 2020-08-15T16:42:22 Z rqi Triple Jump (JOI19_jumps) C++14
0 / 100
92 ms 19040 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 

typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 

typedef vector<int> vi; 
typedef vector<bool> vb; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 

#define mp make_pair
#define f first
#define s second
#define sz(x) (int)(x).size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define sor(x) sort(all(x)) 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

template<class T> bool ckmin(T& a, const T& b) { 
    return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
    return a < b ? a = b, 1 : 0; } 
constexpr int pct(int x) { return __builtin_popcount(x); } 
constexpr int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up
ll fdiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down
ll half(ll x) { return fdiv(x,2); }

template<class T, class U> T fstTrue(T lo, T hi, U f) { 
    // note: if (lo+hi)/2 is used instead of half(lo+hi) then this will loop infinitely when lo=hi
    hi ++; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        T mid = half(lo+hi);
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}
template<class T, class U> T lstTrue(T lo, T hi, U f) {
    lo --; assert(lo <= hi); // assuming f is decreasing
    while (lo < hi) { // find first index such that f is true 
        T mid = half(lo+hi+1);
        f(mid) ? lo = mid : hi = mid-1;
    } 
    return lo;
}
template<class T> void remDup(vector<T>& v) { 
    sort(all(v)); v.erase(unique(all(v)),end(v)); }

// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);

template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }

template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
str ts(bool b) { 
    #ifdef LOCAL
        return b ? "true" : "false"; 
    #else 
        return ts((int)b);
    #endif
}
template<class A> str ts(complex<A> c) { 
    stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) {
    str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
    res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
    str res = ""; F0R(i,SZ) res += char('0'+b[i]);
    return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { // containers with begin(), end()
    #ifdef LOCAL
        bool fst = 1; str res = "{";
        for (const auto& x: v) {
            if (!fst) res += ", ";
            fst = 0; res += ts(x);
        }
        res += "}"; return res;
    #else
        bool fst = 1; str res = "";
        for (const auto& x: v) {
            if (!fst) res += " ";
            fst = 0; res += ts(x);
        }
        return res;

    #endif
}
template<class A, class B> str ts(pair<A,B> p) {
    #ifdef LOCAL
        return "("+ts(p.f)+", "+ts(p.s)+")"; 
    #else
        return ts(p.f)+" "+ts(p.s);
    #endif
}

// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
    pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
    pr(h); if (sizeof...(t)) pr(" "); ps(t...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
    cerr << ts(h); if (sizeof...(t)) cerr << ", ";
    DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL, chk -> fake assert
    #define dbg(...) cerr << "Line(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
    #define chk(...) if (!(__VA_ARGS__)) cerr << "Line(" << __LINE__ << ") -> function(" \
         << __FUNCTION__  << ") -> CHK FAILED: (" << #__VA_ARGS__ << ")" << "\n", exit(0);
#else
    #define dbg(...) 0
    #define chk(...) 0
#endif

// FILE I/O
void setIn(str s) { freopen(s.c_str(),"r",stdin); }
void setOut(str s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { cin.tie(0)->sync_with_stdio(0); }
void setIO(str s = "") {
    unsyncIO();
    // cin.exceptions(cin.failbit); 
    // throws exception when do smth illegal
    // ex. try to read letter into int
    if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}

const int mx = 500005;
const int k = 20;

/**
 * Description: 1D range minimum query. Can also do queries 
     * for any associative operation in $O(1)$ with D\&C
 * Source: KACTL
 * Verification: 
    * https://cses.fi/problemset/stats/1647/
    * http://wcipeg.com/problem/ioi1223
    * https://pastebin.com/ChpniVZL
 * Memory: O(N\log N)
 * Time: O(1)
 */

template<class T> struct RMQ { // floor(log_2(x))
    int level(int x) { return 31-__builtin_clz(x); } 
    vector<T> v; vector<vi> jmp;
    int comb(int a, int b) { // index of min
        return v[a]==v[b]?min(a,b):(v[a]<v[b]?a:b); } 
    void init(const vector<T>& _v) {
        v = _v; jmp = {vi(sz(v))}; iota(all(jmp[0]),0);
        for (int j = 1; 1<<j <= sz(v); ++j) {
            jmp.pb(vi(sz(v)-(1<<j)+1));
            F0R(i,sz(jmp[j])) jmp[j][i] = comb(jmp[j-1][i],
                                    jmp[j-1][i+(1<<(j-1))]);
        }
    }
    int index(int l, int r) { // get index of min element
        int d = level(r-l+1);
        return comb(jmp[d][l],jmp[d][r-(1<<d)+1]); }
    ll query(int l, int r) { if(l > r) return -INF;
        return -v[index(l,r)]; }
};

/**
 * Description: 1D point update, range query where \texttt{comb} is
     * any associative operation. If $N=2^p$ then \texttt{seg[1]==query(0,N-1)}.
 * Time: O(\log N)
 * Source: 
    * http://codeforces.com/blog/entry/18051
    * KACTL
 * Verification: SPOJ Fenwick
 */

template<class T> struct Seg { // comb(ID,b) = b
    const T ID = mp(0, 0); T comb(T a, T b) { return max(a, b); } 
    int n; vector<T> seg;
    void init(int _n) { n = _n; seg.assign(2*n,ID); }
    void pull(int p) { seg[p] = comb(seg[2*p],seg[2*p+1]); }
    void upd(int p, T val) { // set val at position p
        seg[p += n] = val; for (p /= 2; p; p /= 2) pull(p); }
    T query(int l, int r) {    // sum on interval [l, r]
        T ra = ID, rb = ID; 
        for (l += n, r += n+1; l < r; l /= 2, r /= 2) {
            if (l&1) ra = comb(ra,seg[l++]);
            if (r&1) rb = comb(seg[--r],rb);
        }
        return comb(ra,rb);
    }
};




int A[mx];
int L[mx];
int R[mx];
RMQ<int> rmq;
Seg<pi> seg;

ll solve(int l, int r){
    ll ans = 0;
    int n = min(k, r-l+1);
    vi inds;
    for(int i = 0; i < n; i++){
        pi a = seg.query(l, r);
        inds.pb(a.s);
        seg.upd(a.s, mp(0, a.s));
    }
    //dbg(l, r, inds);
    for(auto u: inds){
        seg.upd(u, mp(A[u], u));
    }
    for(int i = 0; i < sz(inds); i++){
        for(int j = i+1; j < sz(inds); j++){
            int a = min(inds[i], inds[j]);
            int b = max(inds[i], inds[j]);
            ckmax(ans, ll(A[a])+ll(A[b])+rmq.query(max(l, 2*a-b), a-1));
            ckmax(ans, ll(A[a])+ll(A[b])+rmq.query(a+1, (a+b)/2));
            ckmax(ans, ll(A[a])+ll(A[b])+rmq.query(2*b-a, min(r, a-1)));
        }
    }
    return ans;
}

int main() {
    setIO();
    int N;
    cin >> N;
    seg.init(N+5);
    vi vals;
    vals.pb(0);
    for(int i = 1; i <= N; i++){
        cin >> A[i];
        vals.pb(-A[i]);
    }
    rmq.init(vals);
    for(int i = 1; i <= N; i++){
        seg.upd(i, mp(A[i], i));
    }
    int Q;
    cin >> Q;
    for(int i = 1; i <= Q; i++){
        cin >> L[i] >> R[i];
        ps(solve(L[i], R[i]));
    }
    // you should actually read the stuff at the bottom
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?)
    * do smth instead of nothing and stay organized
    * WRITE STUFF DOWN
*/

Compilation message

jumps.cpp: In function 'void setIn(str)':
jumps.cpp:168:28: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  168 | void setIn(str s) { freopen(s.c_str(),"r",stdin); }
      |                     ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
jumps.cpp: In function 'void setOut(str)':
jumps.cpp:169:29: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
  169 | void setOut(str s) { freopen(s.c_str(),"w",stdout); }
      |                      ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 2 ms 384 KB Output is correct
5 Correct 2 ms 384 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Incorrect 1 ms 384 KB Output isn't correct
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 2 ms 384 KB Output is correct
5 Correct 2 ms 384 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Incorrect 1 ms 384 KB Output isn't correct
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 79 ms 18912 KB Output is correct
2 Correct 92 ms 19040 KB Output is correct
3 Correct 77 ms 18912 KB Output is correct
4 Correct 82 ms 18912 KB Output is correct
5 Correct 85 ms 18912 KB Output is correct
6 Incorrect 76 ms 18912 KB Output isn't correct
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 1 ms 384 KB Output is correct
4 Correct 2 ms 384 KB Output is correct
5 Correct 2 ms 384 KB Output is correct
6 Correct 1 ms 384 KB Output is correct
7 Incorrect 1 ms 384 KB Output isn't correct
8 Halted 0 ms 0 KB -