Submission #265561

#TimeUsernameProblemLanguageResultExecution timeMemory
265561square1001Palindromes (APIO14_palindrome)C++14
47 / 100
1086 ms79200 KiB
// APIO 2014 Problem 1 - Palindromes #include <tuple> #include <string> #include <vector> #include <iostream> #include <algorithm> #include <functional> #include <unordered_set> using namespace std; int N; unordered_set<int> s1[600009], s2[600009]; tuple<long long, int, int, int> solve(int l, int r, vector<int> &lcp, vector<pair<int, int> > &trait) { // returns = (answer, store-pos, ct1, ct2) int baselen = trait[l].second; for(int i = l; i < r - 1; ++i) { baselen = min(baselen, lcp[i]); } if(r - l == 1) { if(trait[l].first == 1) s1[l].insert(trait[l].second); if(trait[l].first == 2) s2[l].insert(trait[l].second); return make_tuple(1LL, l, 0, 0); } long long ans = 0; vector<tuple<int, int, int> > g; int pre = l; for(int i = l; i < r; ++i) { if(i == r - 1 || lcp[i] == baselen) { tuple<long long, int, int, int> res = solve(pre, i + 1, lcp, trait); ans = max(ans, get<0>(res)); pre = i + 1; g.push_back(make_tuple(get<1>(res), get<2>(res), get<3>(res))); } } int mxpos = -1, mxsize = 0; for(int i = 0; i < g.size(); ++i) { int sz = s1[get<0>(g[i])].size() + s2[get<0>(g[i])].size(); if(mxsize < sz) { mxsize = sz; mxpos = i; } } int p = get<0>(g[mxpos]); int ct1 = get<1>(g[mxpos]) * 2, ct2 = get<2>(g[mxpos]) * 2; for(int i = 0; i < g.size(); ++i) { if(i == mxpos) continue; for(int j : s1[get<0>(g[i])]) { if(s2[p].find(N - j) != s2[p].end()) ++ct1; if(s2[p].find(N - j + 1) != s2[p].end()) ++ct2; } for(int j : s2[get<0>(g[i])]) { if(s1[p].find(N - j) != s1[p].end()) ++ct1; if(s1[p].find(N - j + 1) != s1[p].end()) ++ct2; } } for(int i = 0; i < g.size(); ++i) { if(i == mxpos) continue; for(int j : s1[get<0>(g[i])]) { s1[p].insert(j); } for(int j : s2[get<0>(g[i])]) { s2[p].insert(j); } } for(int i = 0; i < g.size(); ++i) { if(i == mxpos) continue; for(int j : s1[get<0>(g[i])]) { if(s2[p].find(N - j) != s2[p].end()) ++ct1; if(s2[p].find(N - j + 1) != s2[p].end()) ++ct2; } for(int j : s2[get<0>(g[i])]) { if(s1[p].find(N - j) != s1[p].end()) ++ct1; if(s1[p].find(N - j + 1) != s1[p].end()) ++ct2; } } ct1 /= 2; ct2 /= 2; ans = max(ans, 1LL * (baselen * 2) * ct1); ans = max(ans, 1LL * (baselen * 2 - 1) * ct2); return make_tuple(ans, p, ct1, ct2); } int main() { // step #1. read input string S; cin >> S; N = S.size(); // step #2. construct suffix array of T = S + "#" + rev(S) string RS = S; reverse(RS.begin(), RS.end()); string T = S + "#" + RS; vector<int> sa_inv(2 * N + 1); for(int i = 0; i < 2 * N + 1; ++i) { sa_inv[i] = int(T[i]); } for(int i = 1; i < 2 * N + 1; i *= 2) { vector<pair<int, int> > nseq(2 * N + 1); for(int j = 0; j < 2 * N + 1; ++j) { nseq[j] = make_pair(sa_inv[j], j + i < 2 * N + 1 ? sa_inv[j + i] : -1); } vector<pair<int, int> > sseq(nseq); sort(sseq.begin(), sseq.end()); sseq.erase(unique(sseq.begin(), sseq.end()), sseq.end()); for(int j = 0; j < 2 * N + 1; ++j) { sa_inv[j] = lower_bound(sseq.begin(), sseq.end(), nseq[j]) - sseq.begin(); } } vector<int> sa(2 * N + 1); for(int i = 0; i < 2 * N + 1; ++i) { sa[sa_inv[i]] = i; } // step #3. construct rolling-hash table and rolling-hash function const int mod = 469762049; const int base = 311; vector<int> pw(2 * N + 2), h(2 * N + 2); pw[0] = 1; for(int i = 0; i < 2 * N + 1; ++i) { pw[i + 1] = 1LL * pw[i] * base % mod; h[i + 1] = (1LL * h[i] * base + T[i]) % mod; } function<int(int, int)> gethash = [&](int l, int r) { return (h[r] - 1LL * h[l] * pw[r - l] % mod + mod) % mod; }; // step #4. calculate LCP vector<int> lcp(2 * N); for(int i = 0; i < 2 * N; ++i) { int l = 0, r = (2 * N + 1) - max(sa[i], sa[i + 1]) + 1; while(r - l > 1) { int m = (l + r) >> 1; if(gethash(sa[i], sa[i] + m) == gethash(sa[i + 1], sa[i + 1] + m)) l = m; else r = m; } lcp[i] = l; } // step #5. calculate types and lengths of elements in suffix array vector<pair<int, int> > trait(2 * N + 1); for(int i = 0; i < 2 * N + 1; ++i) { if(sa[i] == N) trait[i] = make_pair(0, -1); else if(sa[i] < N) trait[i] = make_pair(1, N - sa[i]); else trait[i] = make_pair(2, (2 * N + 1) - sa[i]); } // step #6. calculate the answer tuple<long long, int, int, int> ans = solve(1, 2 * N + 1, lcp, trait); // step #7. print the answer cout << get<0>(ans) << endl; return 0; }

Compilation message (stderr)

palindrome.cpp: In function 'std::tuple<long long int, int, int, int> solve(int, int, std::vector<int>&, std::vector<std::pair<int, int> >&)':
palindrome.cpp:35:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::tuple<int, int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   35 |  for(int i = 0; i < g.size(); ++i) {
      |                 ~~^~~~~~~~~~
palindrome.cpp:44:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::tuple<int, int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   44 |  for(int i = 0; i < g.size(); ++i) {
      |                 ~~^~~~~~~~~~
palindrome.cpp:55:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::tuple<int, int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   55 |  for(int i = 0; i < g.size(); ++i) {
      |                 ~~^~~~~~~~~~
palindrome.cpp:64:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::tuple<int, int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   64 |  for(int i = 0; i < g.size(); ++i) {
      |                 ~~^~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...