Submission #26409

# Submission time Handle Problem Language Result Execution time Memory
26409 2017-06-30T04:27:36 Z zscoder Hacker (BOI15_hac) C++14
40 / 100
1000 ms 37104 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
 
using namespace std;
using namespace __gnu_pbds;
 
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define fbo find_by_order
#define ook order_of_key
 
typedef long long ll;
typedef pair<ll,ll> ii;
typedef vector<ll> vi;
typedef long double ld; 
typedef tree<ll, null_type, less<ll>, rb_tree_tag, tree_order_statistics_node_update> pbds;
typedef set<ll>::iterator sit;
typedef map<ll,ll>::iterator mit;

int a[1000011];
int pref[1000011];

int S(int l, int r)
{
	if(l==0) return pref[r];
	else return pref[r]-pref[l-1];
}

int s[1000011];
int n; 
int ans[1000011];
const int INF = int(2e9)+200;
int f1[1000011];
int f2[1000011];
int f3[1000011];
int f4[1000011];

void del(map<int,int> &ma, int v)
{
	ma[v]--;
	if(ma[v]==0) ma.erase(v);
}

#define scan(x) do{while((_n=getchar())<45);if(_n-45)x=_n;else x=getchar();for(x-=48;47<(_=getchar());x=(x<<3)+(x<<1)+_-48);if(_n<46)x=-x;}while(0)
char _, _n;
int main()
{
	scan(n);
	for(int i=0;i<n;i++) 
	{
		scan(a[i]);
		a[n+i]=a[i];
	}
	for(int i=0;i<2*n;i++)
	{
		pref[i]=a[i];
		if(i>0) pref[i]+=pref[i-1];
	}
	for(int i=0;i<n;i++)
	{
		int l = i; int r = i + (n-1)/2;
		s[i] = S(l,r);
		s[n+i]=s[i];
	}
	for(int i=0;i<n;i++)
	{
		ans[i]=min(s[i],s[i+(n-1)/2]);
		ans[i+n]=INF;
	}
	for(int id=0;id<2*n;id++)
	{
		f1[id]=s[(id+1)];
		if(id+2<2*n) f2[id]=max(min(s[id],s[(id+2)]),s[(id+1)]);
		if(id+1<2*n) f3[id]=max(s[id+1],s[id]);
		if(id+2<2*n) f4[id]=min(max(s[id],s[(id+2)]),s[(id+1)]);
	}
	int k = (n+1)/2;
	if(n&1)
	{
		{
			map<int,int> ma;
			int L = -k/2+1+(k%2==0);
			int R = 0;
			//ans[i] update by min of [i - R, i - L]
			for(int i = max(-R, 0); i <= min(-L, n); i++) ma[f1[i]]++;
			for(int i=0;i<n;i++)
			{
				if(!ma.empty())
				{
					ans[i]=min(ans[i],(ma.begin())->fi);
				}
				if(i+1<n)
				{
					if(i+1-L>=0&&i+1-L<2*n)
					{
						ma[f1[i+1-L]]++;
					}
					if(i-R>=0&&i-R<2*n)
					{
						del(ma,f1[i-R]);
					}
				}				
			}
		}
		{
			map<int,int> ma;
			int L = -k/2+1+(k%2==0);
			int R = 0;
			//ans[i] update by min of [i - R, i - L]
			for(int i = max(-R, 0); i <= min(-L, n); i++) ma[f1[i]]++;
			for(int i=0;i<n;i++)
			{
				if(!ma.empty())
				{
					ans[i]=min(ans[i],(ma.begin())->fi);
				}
				if(i+1<n)
				{
					if(i+1-L>=0&&i+1-L<2*n)
					{
						ma[f1[i+1-L]]++;
					}
					if(i-R>=0&&i-R<2*n)
					{
						del(ma,f1[i-R]);
					}
				}				
			}
		}
		if(n>2)
		{
			{
				map<int,int> ma;
				int L = -(k-1)/2+1+(k&1);
				int R = 0;
				//ans[i] update by min of [i - R, i - L]
				for(int i = max(-R, 0); i <= min(-L, 2*n); i++) ma[f2[i]]++;
				for(int i=0;i<n;i++)
				{
					if(!ma.empty())
					{
						ans[i]=min(ans[i],(ma.begin())->fi);
					}
					if(i+1<n)
					{
						if(i+1-L>=0&&i+1-L<2*n)
						{
							ma[f2[i+1-L]]++;
						}
						if(i-R>=0&&i-R<2*n)
						{
							del(ma,f2[i-R]);
						}
					}				
				}
			}
			{
				map<int,int> ma;
				int L = 3-k;
				int R = 3-k+(k-1)/2-(k&1)-1;
				//ans[i] update by min of [i - R, i - L]
				for(int i = max(-R, 0); i <= min(-L, 2*n); i++) ma[f2[i]]++;
				for(int i=0;i<n;i++)
				{
					if(!ma.empty())
					{
						ans[i]=min(ans[i],(ma.begin())->fi);
					}
					if(i+1<n)
					{
						if(i+1-L>=0&&i+1-L<2*n)
						{
							ma[f2[i+1-L]]++;
						}
						if(i-R>=0&&i-R<2*n)
						{
							del(ma,f2[i-R]);
						}
					}				
				}
			}
		}
	}
	else
	{
		{
			map<int,int> ma;
			int L = -k/2+1;
			int R = 0;
			//ans[i] update by min of [i - R, i - L]
			for(int i = max(-R, 0); i <= min(-L, 2*n); i++) ma[f3[i]]++;
			for(int i=0;i<n;i++)
			{
				if(!ma.empty())
				{
					ans[i]=min(ans[i],(ma.begin())->fi);
				}
				if(i+1<n)
				{
					if(i+1-L>=0&&i+1-L<2*n)
					{
						ma[f3[i+1-L]]++;
					}
					if(i-R>=0&&i-R<2*n)
					{
						del(ma,f3[i-R]);
					}
				}				
			}
		}
		{
			map<int,int> ma;
			int L = 2-k;
			int R = 2-k+k/2-1;
			//ans[i] update by min of [i - R, i - L]
			for(int i = max(-R, 0); i <= min(-L, 2*n); i++) ma[f3[i]]++;
			for(int i=0;i<n;i++)
			{
				if(!ma.empty())
				{
					ans[i]=min(ans[i],(ma.begin())->fi);
				}
				if(i+1<n)
				{
					if(i+1-L>=0&&i+1-L<2*n)
					{
						ma[f3[i+1-L]]++;
					}
					if(i-R>=0&&i-R<2*n)
					{
						del(ma,f3[i-R]);
					}
				}				
			}
		}
		if(n>2)
		{
			{
				map<int,int> ma;
				int L = -(k-1)/2+1;
				int R = 0;
				//ans[i] update by min of [i - R, i - L]
				for(int i = max(-R, 0); i <= min(-L, 2*n); i++) ma[f4[i]]++;
				for(int i=0;i<n;i++)
				{
					if(!ma.empty())
					{
						ans[i]=min(ans[i],(ma.begin())->fi);
					}
					if(i+1<n)
					{
						if(i+1-L>=0&&i+1-L<2*n)
						{
							ma[f4[i+1-L]]++;
						}
						if(i-R>=0&&i-R<2*n)
						{
							del(ma,f4[i-R]);
						}
					}				
				}
			}
			{
				map<int,int> ma;
				int L = 3-k;
				int R = 3-k+(k-1)/2-1;
				//ans[i] update by min of [i - R, i - L]
				for(int i = max(-R, 0); i <= min(-L, 2*n); i++) ma[f4[i]]++;
				for(int i=0;i<n;i++)
				{
					if(!ma.empty())
					{
						ans[i]=min(ans[i],(ma.begin())->fi);
					}
					if(i+1<n)
					{
						if(i+1-L>=0&&i+1-L<2*n)
						{
							ma[f4[i+1-L]]++;
						}
						if(i-R>=0&&i-R<2*n)
						{
							del(ma,f4[i-R]);
						}
					}
				}
			}
		}
	}
	int res=0;
	for(int i=0;i<n;i++)
	{
		res=max(res,min(ans[i],ans[i+n]));
	}
	printf("%d\n",res);
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 33276 KB Output is correct
2 Correct 0 ms 33276 KB Output is correct
3 Correct 0 ms 33276 KB Output is correct
4 Correct 0 ms 33276 KB Output is correct
5 Correct 0 ms 33276 KB Output is correct
6 Correct 0 ms 33276 KB Output is correct
7 Correct 0 ms 33276 KB Output is correct
8 Correct 0 ms 33276 KB Output is correct
9 Correct 0 ms 33276 KB Output is correct
10 Correct 0 ms 33276 KB Output is correct
11 Correct 0 ms 33276 KB Output is correct
12 Correct 0 ms 33276 KB Output is correct
13 Correct 0 ms 33276 KB Output is correct
14 Correct 0 ms 33276 KB Output is correct
15 Correct 0 ms 33276 KB Output is correct
16 Correct 0 ms 33276 KB Output is correct
17 Correct 0 ms 33276 KB Output is correct
18 Correct 0 ms 33276 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 33276 KB Output is correct
2 Correct 0 ms 33276 KB Output is correct
3 Correct 0 ms 33276 KB Output is correct
4 Correct 0 ms 33276 KB Output is correct
5 Correct 0 ms 33276 KB Output is correct
6 Correct 0 ms 33276 KB Output is correct
7 Correct 0 ms 33276 KB Output is correct
8 Correct 0 ms 33276 KB Output is correct
9 Correct 0 ms 33276 KB Output is correct
10 Correct 0 ms 33276 KB Output is correct
11 Correct 0 ms 33276 KB Output is correct
12 Correct 0 ms 33276 KB Output is correct
13 Correct 0 ms 33276 KB Output is correct
14 Correct 0 ms 33276 KB Output is correct
15 Correct 0 ms 33276 KB Output is correct
16 Correct 0 ms 33276 KB Output is correct
17 Correct 0 ms 33276 KB Output is correct
18 Correct 0 ms 33276 KB Output is correct
19 Correct 0 ms 33276 KB Output is correct
20 Correct 0 ms 33276 KB Output is correct
21 Correct 0 ms 33276 KB Output is correct
22 Correct 3 ms 33276 KB Output is correct
23 Correct 6 ms 33276 KB Output is correct
24 Correct 3 ms 33276 KB Output is correct
25 Correct 9 ms 33276 KB Output is correct
26 Correct 9 ms 33276 KB Output is correct
27 Correct 0 ms 33276 KB Output is correct
28 Correct 0 ms 33276 KB Output is correct
29 Correct 0 ms 33276 KB Output is correct
30 Correct 6 ms 33408 KB Output is correct
31 Correct 6 ms 33408 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 33276 KB Output is correct
2 Correct 0 ms 33276 KB Output is correct
3 Correct 9 ms 33276 KB Output is correct
4 Correct 189 ms 33936 KB Output is correct
5 Correct 469 ms 34728 KB Output is correct
6 Correct 706 ms 35388 KB Output is correct
7 Correct 889 ms 35652 KB Output is correct
8 Execution timed out 1000 ms 37104 KB Execution timed out
# Verdict Execution time Memory Grader output
1 Correct 0 ms 33276 KB Output is correct
2 Correct 0 ms 33276 KB Output is correct
3 Correct 0 ms 33276 KB Output is correct
4 Correct 0 ms 33276 KB Output is correct
5 Correct 0 ms 33276 KB Output is correct
6 Correct 0 ms 33276 KB Output is correct
7 Correct 0 ms 33276 KB Output is correct
8 Correct 0 ms 33276 KB Output is correct
9 Correct 0 ms 33276 KB Output is correct
10 Correct 0 ms 33276 KB Output is correct
11 Correct 0 ms 33276 KB Output is correct
12 Correct 0 ms 33276 KB Output is correct
13 Correct 0 ms 33276 KB Output is correct
14 Correct 0 ms 33276 KB Output is correct
15 Correct 0 ms 33276 KB Output is correct
16 Correct 0 ms 33276 KB Output is correct
17 Correct 0 ms 33276 KB Output is correct
18 Correct 0 ms 33276 KB Output is correct
19 Correct 0 ms 33276 KB Output is correct
20 Correct 0 ms 33276 KB Output is correct
21 Correct 0 ms 33276 KB Output is correct
22 Correct 3 ms 33276 KB Output is correct
23 Correct 6 ms 33276 KB Output is correct
24 Correct 3 ms 33276 KB Output is correct
25 Correct 9 ms 33276 KB Output is correct
26 Correct 9 ms 33276 KB Output is correct
27 Correct 0 ms 33276 KB Output is correct
28 Correct 0 ms 33276 KB Output is correct
29 Correct 0 ms 33276 KB Output is correct
30 Correct 6 ms 33408 KB Output is correct
31 Correct 6 ms 33408 KB Output is correct
32 Correct 0 ms 33276 KB Output is correct
33 Correct 0 ms 33276 KB Output is correct
34 Correct 9 ms 33276 KB Output is correct
35 Correct 189 ms 33936 KB Output is correct
36 Correct 469 ms 34728 KB Output is correct
37 Correct 706 ms 35388 KB Output is correct
38 Correct 889 ms 35652 KB Output is correct
39 Execution timed out 1000 ms 37104 KB Execution timed out