Submission #262965

# Submission time Handle Problem Language Result Execution time Memory
262965 2020-08-13T11:32:54 Z shayan_p Koala Game (APIO17_koala) C++14
67 / 100
81 ms 512 KB
// And you curse yourself for things you never done

#include<bits/stdc++.h>
#include "koala.h"

#define F first
#define S second
#define PB push_back
#define sz(s) int((s).size())
#define bit(n,k) (((n)>>(k))&1)

using namespace std;

typedef long long ll;
typedef pair<int,int> pii;

const int maxn = 110, mod = 1e9 + 7, inf = 1e9 + 10;

int minValue(int N, int W) {
    int A[maxn], B[maxn];
    memset(A, 0, sizeof A);
    memset(B, 0, sizeof B);
    A[0] = 1;
    playRound(A, B);
    if(B[0] <= 1)
	return 0;
    int ans = 0;
    for(int i = 1; i < N; i++)
	if(B[i] == 0)
	    ans = i;
    return ans;
}

int maxValue(int N, int W) {
    int SM[maxn];
    vector<pii> v[maxn];
    int h[maxn];
    pii pr[maxn];

    memset(SM, 0, sizeof SM);
    memset(h, -1, sizeof h);
    for(int i = 0; i < maxn; i++)
	v[i].clear();
    
    for(int i = 1; i <= N; i++)
	SM[i] = SM[i-1] + i;

    auto f = [&](int n, int cost, int top, int lim){
		 assert(top <= n);
		 int sm = 0, bst = 0;
		 for(int i = 0; i <= top; i++){
		     if(i * cost > lim)
			 break;
		     bst = max(bst, sm + SM[n-top] - SM[max(int(0), n-top-(lim - i*cost))]);
		     sm+= n-i;
		 }
		 sm = 0;
		 int bstid = -1;
		 for(int i = 0; i <= top; i++){
		     if(i * cost > lim)
			 break;
		     int num = sm + SM[n-top] - SM[max(int(0), n-top-(lim - i*cost))];
		     if(num == bst){
			 if(bstid == -1)
			     bstid = i;
			 if(bstid != i)
			     return -1;
		     }
		     sm+= n-i;
		 }
		 return bstid;
	     };

    
    for(int top = 100; top >= 1; top--){
	for(int cost = 2; top * (cost-1) <= 100; cost++){
	    int x =  f(100, cost, top, 100);
	    if(x != -1)
		v[top].PB({x, cost});
	}
    }

    queue<int> q;
    h[N] = 0;
    q.push(N);
    while(sz(q)){
	int u = q.front();
	q.pop();
	for(pii p : v[u])
	    if(h[p.F] == -1)
		pr[p.F] = {u, p.S}, h[p.F] = h[u] + 1, q.push(p.F);
    }

    vector<pii> tdo;
    int tmp = 1;
    while(tmp != N){
	tdo.PB(pr[tmp]);
	tmp = pr[tmp].F;
    }
    reverse(tdo.begin(), tdo.end());

    vector<int> big;
    for(int i = 0; i < N; i++){
	big.PB(i);
    }

    int A[maxn], B[maxn];
    bool inside[maxn];
    for(pii p : tdo){
	memset(A, 0, sizeof A);
	memset(B, 0, sizeof B);
	memset(inside, 0, sizeof inside);
	for(int id : big)
	    A[id] = p.S-1, inside[id] = 1;
	playRound(A, B);
	big.clear();
	for(int i = 0; i < N; i++){
	    if(inside[i] && B[i] >= p.S)
		big.PB(i);
	}
    }
    assert(sz(big) == 1);
    return big[0];
}

bool comp(int a, int b){
    int A[maxn], B[maxn];
    for(int d : {9, 5, 3, 1}){
	memset(A, 0, sizeof A);
	memset(B, 0, sizeof B);
	A[a] = d, A[b] = d;
	playRound(A, B);
	bool X = B[a] > d, Y = B[b] > d;
	if(X ^ Y){
	    if(X)
		return 0;
	    else
		return 1;
	}
    }
    assert(0);
}

int greaterValue(int N, int W) {
    return comp(0, 1);
}

void allValues(int N, int W, int *P) {
    if (W == 2*N) {
        // TODO: Implement Subtask 4 solution here.
        // You may leave this block unmodified if you are not attempting this
        // subtask.
    } else {
	int A[maxn], B[maxn];
	for(int i = 0; i < N; i++)
	    P[i] = 0;
	memset(A, 0, sizeof A);
	fill(A, A+N, 1);
	playRound(A, B);
	set<int> big;
	vector<int> vec, del;
	for(int i = 0; i < N; i++){
	    if(B[i] > 1)
		big.insert(i), vec.PB(i);
	}
	int NXT = N/2;
	while(sz(vec) > 1){
	    del.PB(vec.back());
	    vec.pop_back();
	    del.PB(vec.back());
	    vec.pop_back();
	    for(int i = 0; i < N; i++)
		A[i] = 1;
	    for(int i : del)
		A[i] = 0;
	    playRound(A, B);
	    for(int i = 0; i < N; i++){
		if(big.count(i) == 0 && B[i] > A[i])
		    big.insert(i), vec.PB(i), P[i] = NXT, NXT--;
	    }
	}
	assert(sz(vec) == 1 && sz(big) == N-1 && NXT == 1);
	for(int i = 0; i < N; i++){
	    if(big.count(i) == 0)
		P[i] = 1;
	}
	vector<int> extra;
	for(int i = 0; i < N; i++)
	    if(P[i] == 0)
		extra.PB(i);
	
	sort(extra.begin(), extra.end(), [](int a, int b){ return comp(a, b); });
	
	assert(sz(extra) == N/2);
	for(int i = 0; i < sz(extra); i++)
	    P[extra[i]] = N/2 + i + 1;
    }
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 384 KB Output is correct
2 Correct 6 ms 384 KB Output is correct
3 Correct 6 ms 384 KB Output is correct
4 Correct 6 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 24 ms 384 KB Output is correct
2 Correct 24 ms 384 KB Output is correct
3 Correct 24 ms 384 KB Output is correct
4 Correct 23 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 74 ms 504 KB Output is partially correct
2 Partially correct 81 ms 384 KB Output is partially correct
3 Partially correct 69 ms 384 KB Output is partially correct
4 Partially correct 69 ms 384 KB Output is partially correct
5 Partially correct 70 ms 384 KB Output is partially correct
6 Correct 76 ms 512 KB Output is correct
7 Partially correct 68 ms 384 KB Output is partially correct
8 Correct 70 ms 384 KB Output is correct
9 Correct 69 ms 384 KB Output is correct
10 Correct 71 ms 404 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 0 ms 256 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Partially correct 13 ms 384 KB Output is partially correct
2 Partially correct 16 ms 384 KB Output is partially correct
3 Partially correct 17 ms 384 KB Output is partially correct
4 Partially correct 20 ms 384 KB Output is partially correct
5 Partially correct 17 ms 384 KB Output is partially correct
6 Partially correct 17 ms 384 KB Output is partially correct
7 Partially correct 19 ms 384 KB Output is partially correct
8 Partially correct 17 ms 384 KB Output is partially correct
9 Partially correct 16 ms 384 KB Output is partially correct
10 Partially correct 16 ms 384 KB Output is partially correct
11 Partially correct 16 ms 384 KB Output is partially correct
12 Partially correct 12 ms 384 KB Output is partially correct
13 Partially correct 18 ms 384 KB Output is partially correct
14 Partially correct 17 ms 384 KB Output is partially correct
15 Partially correct 17 ms 384 KB Output is partially correct
16 Partially correct 27 ms 384 KB Output is partially correct
17 Partially correct 18 ms 384 KB Output is partially correct
18 Partially correct 17 ms 384 KB Output is partially correct
19 Partially correct 18 ms 384 KB Output is partially correct
20 Partially correct 17 ms 384 KB Output is partially correct
21 Partially correct 16 ms 384 KB Output is partially correct
22 Partially correct 17 ms 384 KB Output is partially correct
23 Partially correct 21 ms 384 KB Output is partially correct
24 Partially correct 16 ms 384 KB Output is partially correct
25 Partially correct 18 ms 396 KB Output is partially correct
26 Partially correct 15 ms 384 KB Output is partially correct
27 Partially correct 18 ms 384 KB Output is partially correct
28 Partially correct 17 ms 384 KB Output is partially correct
29 Partially correct 16 ms 384 KB Output is partially correct
30 Partially correct 18 ms 384 KB Output is partially correct
31 Partially correct 17 ms 384 KB Output is partially correct
32 Partially correct 16 ms 384 KB Output is partially correct
33 Partially correct 16 ms 288 KB Output is partially correct
34 Partially correct 20 ms 384 KB Output is partially correct
35 Partially correct 17 ms 384 KB Output is partially correct
36 Partially correct 17 ms 384 KB Output is partially correct
37 Partially correct 16 ms 512 KB Output is partially correct
38 Partially correct 17 ms 288 KB Output is partially correct
39 Partially correct 18 ms 384 KB Output is partially correct
40 Partially correct 16 ms 384 KB Output is partially correct