# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
258249 |
2020-08-05T15:20:31 Z |
atoiz |
Sky Walking (IOI19_walk) |
C++14 |
|
2178 ms |
83776 KB |
#include "walk.h"
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <tuple>
#include <cassert>
#include <numeric>
using namespace std;
using ll = long long;
const int MAXY = 1000100100;
const ll INFLL = 1e16;
int N, M, T;
vector<int> X, H, L, R, Y;
vector<int> valY;
int dist(int i, int j) { return abs(X[i] - X[j]); }
// int pos(int y) { return (int) (upper_bound(valY.begin(), valY.end(), y) - valY.begin() - 1); } // first <=
struct SegmentTree {
vector<ll> lazy, arr;
vector<int> cnt;
SegmentTree(): lazy((T + 2) * 4, INFLL), arr((T + 2) * 4, INFLL), cnt((T + 2) * 4, 0) {}
void push(int rt, int lo, int hi) {
if (lazy[rt] != INFLL && cnt[rt]) {
if (lo == hi) arr[lo] = min(arr[lo], lazy[rt]);
else {
int lc = rt << 1, rc = rt << 1 | 1;
lazy[lc] = min(lazy[lc], lazy[rt]), lazy[rc] = min(lazy[rc], lazy[rt]);
}
}
lazy[rt] = INFLL;
}
void insert(int y, ll c) {
int rt = 1, lo = 0, hi = T - 1;
while (true) {
push(rt, lo, hi);
++cnt[rt];
if (lo == hi) {
assert(valY[lo] == y);
arr[lo] = min(arr[lo], c);
break;
}
int md = (lo + hi) >> 1;
(y <= valY[md]) ? (rt = rt << 1, hi = md) : (rt = rt << 1 | 1, lo = md + 1);
}
}
void remove(int y) {
int rt = 1, lo = 0, hi = T - 1;
while (true) {
push(rt, lo, hi);
--cnt[rt];
if (lo == hi) {
if (cnt[rt] == 0) arr[lo] = INFLL;
break;
}
int md = (lo + hi) >> 1;
(y <= valY[md]) ? (rt = rt << 1, hi = md) : (rt = rt << 1 | 1, lo = md + 1);
}
}
void minimize(int l, int r, ll c, int rt, int lo, int hi) {
if (valY[hi] < l || r < valY[lo] || !cnt[rt] || lazy[rt] <= c) return;
push(rt, lo, hi);
if (l <= valY[lo] && valY[hi] <= r) return lazy[rt] = min(lazy[rt], c), void(0);
int lc = rt << 1, rc = rt << 1 | 1, md = (lo + hi) >> 1;
minimize(l, r, c, lc, lo, md), minimize(l, r, c, rc, md + 1, hi);
}
void minimize(int l, int r, ll c) { minimize(l, r, c, 1, 0, T - 1); }
ll get(int l, int r, bool minY, int rt, int lo, int hi, bool &found) {
if (valY[hi] < l || r < valY[lo] || !cnt[rt] || found) return INFLL;
push(rt, lo, hi);
if (lo == hi) return found = true, arr[lo];
int lc = rt << 1, rc = rt << 1 | 1, md = (lo + hi) >> 1;
ll ans = INFLL;
if (minY) {
ans = get(l, r, minY, lc, lo, md, found);
if (!found) ans = get(l, r, minY, rc, md + 1, hi, found);
} else {
ans = get(l, r, minY, rc, md + 1, hi, found);
if (!found) ans = get(l, r, minY, lc, lo, md, found);
}
return ans;
}
ll get(int l, int r, bool minY) { bool found = false; return get(l, r, minY, 1, 0, T - 1, found); }
int getPos(int l, int r, bool minY, int rt, int lo, int hi, bool &found) {
if (valY[hi] < l || r < valY[lo] || !cnt[rt] || found) return -1;
push(rt, lo, hi);
if (lo == hi) return found = true, lo;
int lc = rt << 1, rc = rt << 1 | 1, md = (lo + hi) >> 1;
int ans = -1;
if (minY) {
ans = getPos(l, r, minY, lc, lo, md, found);
if (!found) ans = getPos(l, r, minY, rc, md + 1, hi, found);
} else {
ans = getPos(l, r, minY, rc, md + 1, hi, found);
if (!found) ans = getPos(l, r, minY, lc, lo, md, found);
}
return ans;
}
int getPos(int l, int r, bool minY) { bool found = false; return getPos(l, r, minY, 1, 0, T - 1, found); }
};
vector<vector<pair<int, ll>>> solve(int start) {
// cout << "solve " << start << endl;
vector<vector<pair<int, ll>>> ans(M);
vector<vector<int>> walksAdd(N), walksRem(N);
vector<int> walkL(M, -1), walkR(M, -1);
vector<int> walkIDs(M);
iota(walkIDs.begin(), walkIDs.end(), 0);
sort(walkIDs.begin(), walkIDs.end(), [&](int i, int j) { return Y[i] < Y[j]; });
vector<int> lCols, rCols;
for (int x = 0; x <= start; lCols.push_back(x++)) while (!lCols.empty() && H[lCols.back()] <= H[x]) lCols.pop_back();
for (int x = N - 1; x >= start; rCols.push_back(x--)) while (!rCols.empty() && H[rCols.back()] <= H[x]) rCols.pop_back();
for (int w : walkIDs) {
if (L[w] <= start && start <= R[w] && Y[w] <= H[start]) {
walksAdd[walkL[w] = walkR[w] = start].push_back(w);
walksRem[L[w]].push_back(w), walksRem[R[w]].push_back(w);
continue;
}
while (!lCols.empty() && H[lCols.back()] < Y[w]) lCols.pop_back();
while (!rCols.empty() && H[rCols.back()] < Y[w]) rCols.pop_back();
if (!rCols.empty() && rCols.back() <= L[w]) walksAdd[L[w]].push_back(w), walksRem[R[w]].push_back(w);
else if (!lCols.empty() && lCols.back() >= R[w]) walksAdd[R[w]].push_back(w), walksRem[L[w]].push_back(w);
else {
if (!lCols.empty() && L[w] <= lCols.back()) walksAdd[walkL[w] = lCols.back()].push_back(w), walksRem[L[w]].push_back(w);
if (!rCols.empty() && R[w] >= rCols.back()) walksAdd[walkR[w] = rCols.back()].push_back(w), walksRem[R[w]].push_back(w);
}
}
// for (int x = 0; x < N; ++x) {
// cout << x << ":\n";
// for (auto w : walksRem[x]) cout << L[w] << ' ' << R[w] << ' ' << Y[w] << endl;
// }
vector<vector<SegmentTree>> st(2, vector<SegmentTree>(2, SegmentTree()));
for (int w : walksAdd[start]) {
st[0][0].insert(Y[w], 0), st[0][1].insert(Y[w], Y[w]);
st[1][0].insert(Y[w], 0), st[1][1].insert(Y[w], Y[w]);
// ans[w].emplace_back(start, 0);
}
vector<vector<pair<int, ll>>> updates(N);
int leftBorder = start, rightBorder = start;
vector<vector<int>> mergers(2, vector<int>(1, start));
while (leftBorder >= 0 || rightBorder < N) {
if (leftBorder >= 0) {
for (auto upd : updates[leftBorder]) {
// cout << "." << endl;
int y = upd.first;
ll c = upd.second;
// cout << "upd " << y << ' ' << c << endl;
st[0][0].minimize(y, H[leftBorder], c), st[0][1].minimize(0, y, c + y);
}
updates[leftBorder].clear();
}
if (rightBorder <= N - 1) {
for (auto upd : updates[rightBorder]) {
// cout << "." << endl;
int y = upd.first;
ll c = upd.second;
// cout << "upd " << y << ' ' << c << endl;
st[1][0].minimize(y, H[rightBorder], c), st[1][1].minimize(0, y, c + y);
}
updates[rightBorder].clear();
}
ll leftBest = st[0][0].get(0, MAXY, false), rightBest = st[1][0].get(0, MAXY, false);
bool k = leftBest > rightBest;
if (leftBorder == -1) k = 1;
if (rightBorder == N) k = 0;
int col = (k == 0 ? leftBorder-- : rightBorder++);
// cout << "T" << endl;
for (int w : walksAdd[col]) {
ll curCost = min(st[k][0].get(Y[w], Y[w], false), st[k][1].get(Y[w], Y[w], false) - Y[w]);
if (curCost == INFLL - Y[w]) curCost = INFLL;
// cout << "dist " << col << ' ' << Y[w] << ": " << curCost << endl;
ans[w].emplace_back(col, curCost);
if (~walkL[w] && ~walkR[w] && walkL[w] < start && start < walkR[w]) {
if (col == walkL[w]) updates[walkR[w]].emplace_back(Y[w], curCost + X[start] - X[col]);
if (col == walkR[w]) updates[walkL[w]].emplace_back(Y[w], curCost + X[col] - X[start]);
}
}
for (int w : walksRem[col]) {
if ((k == 0) ? (L[w] != col) : (R[w] != col)) continue;
ll curCost = min(st[k][0].get(Y[w], Y[w], false), st[k][1].get(Y[w], Y[w], false) - Y[w]);
if (curCost == INFLL - Y[w]) curCost = INFLL;
st[k][0].remove(Y[w]), st[k][1].remove(Y[w]);
if (curCost != INFLL) {
int i = st[k][0].getPos(0, Y[w] - 1, false);
st[k][0].minimize(Y[w], H[col], curCost);
if (~i) st[k][0].minimize(valY[i], valY[i], curCost + Y[w] - valY[i]);
}
}
(k == 0 ? --col : ++col);
if (col != -1 && col != N) {
for (int w : walksAdd[col]) {
ll curCost = min(st[k][0].get(0, Y[w], false), st[k][1].get(Y[w], H[col], true) - Y[w]);
if (curCost == INFLL - Y[w]) curCost = INFLL;
st[k][0].insert(Y[w], curCost), st[k][1].insert(Y[w], curCost + Y[w]);
// cout << "pre dist " << col << ' ' << Y[w] << ": " << curCost << endl;
}
// cout << "S" << endl;
for (; !mergers[k].empty() && H[mergers[k].back()] <= H[col]; mergers[k].pop_back()) {
int prv = mergers[k].back();
ll curCost = st[k][1].get(H[prv] + 1, H[col], true);
st[k][1].minimize(0, H[prv], curCost);
}
mergers[k].push_back(col);
}
}
return ans;
}
ll min_distance(vector<int> x, vector<int> h, vector<int> l, vector<int> r, vector<int> y, int s, int t) {
N = (int) x.size(), M = (int) y.size();
X = x, H = h, L = l, R = r, Y = y;
valY = Y;
sort(valY.begin(), valY.end()), valY.erase(unique(valY.begin(), valY.end()), valY.end());
T = (int) valY.size();
vector<vector<pair<int, ll>>> ansS = solve(s);
vector<vector<pair<int, ll>>> ansT = solve(t);
ll ans = INFLL;
for (int j = 0; j < M; ++j) {
for (auto p : ansS[j]) for (auto q : ansT[j]) {
ll cur = 0;
cur += (ll) Y[j] * 2;
cur += (ll) dist(p.first, q.first) + dist(p.first, s) + dist(q.first, t);
cur += (p.second + q.second) * 2;
// if (cur == 27) cout << L[j] << ' ' << R[j] << ' ' << Y[j] << " - " << p.first << ' ' << q.first << endl;
ans = min(ans, cur);
}
}
if (ans == INFLL) ans = -1;
return ans;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
256 KB |
Output is correct |
2 |
Correct |
1 ms |
256 KB |
Output is correct |
3 |
Correct |
1 ms |
256 KB |
Output is correct |
4 |
Correct |
0 ms |
256 KB |
Output is correct |
5 |
Correct |
1 ms |
384 KB |
Output is correct |
6 |
Correct |
1 ms |
384 KB |
Output is correct |
7 |
Correct |
1 ms |
384 KB |
Output is correct |
8 |
Correct |
1 ms |
384 KB |
Output is correct |
9 |
Correct |
1 ms |
384 KB |
Output is correct |
10 |
Correct |
1 ms |
384 KB |
Output is correct |
11 |
Correct |
1 ms |
384 KB |
Output is correct |
12 |
Correct |
1 ms |
384 KB |
Output is correct |
13 |
Correct |
1 ms |
384 KB |
Output is correct |
14 |
Correct |
1 ms |
384 KB |
Output is correct |
15 |
Correct |
1 ms |
384 KB |
Output is correct |
16 |
Correct |
1 ms |
384 KB |
Output is correct |
17 |
Correct |
1 ms |
384 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
256 KB |
Output is correct |
2 |
Correct |
0 ms |
256 KB |
Output is correct |
3 |
Correct |
1082 ms |
70852 KB |
Output is correct |
4 |
Correct |
1527 ms |
80620 KB |
Output is correct |
5 |
Correct |
737 ms |
62520 KB |
Output is correct |
6 |
Correct |
817 ms |
64316 KB |
Output is correct |
7 |
Correct |
1020 ms |
63056 KB |
Output is correct |
8 |
Correct |
1168 ms |
70848 KB |
Output is correct |
9 |
Correct |
1109 ms |
78352 KB |
Output is correct |
10 |
Correct |
1543 ms |
79764 KB |
Output is correct |
11 |
Correct |
1326 ms |
73640 KB |
Output is correct |
12 |
Correct |
1089 ms |
82180 KB |
Output is correct |
13 |
Correct |
1314 ms |
82248 KB |
Output is correct |
14 |
Correct |
981 ms |
77200 KB |
Output is correct |
15 |
Correct |
890 ms |
42372 KB |
Output is correct |
16 |
Correct |
670 ms |
34936 KB |
Output is correct |
17 |
Correct |
624 ms |
32348 KB |
Output is correct |
18 |
Correct |
969 ms |
81180 KB |
Output is correct |
19 |
Correct |
42 ms |
4388 KB |
Output is correct |
20 |
Correct |
439 ms |
41952 KB |
Output is correct |
21 |
Correct |
386 ms |
30888 KB |
Output is correct |
22 |
Correct |
395 ms |
35208 KB |
Output is correct |
23 |
Correct |
838 ms |
56052 KB |
Output is correct |
24 |
Correct |
613 ms |
35492 KB |
Output is correct |
25 |
Correct |
388 ms |
31896 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
101 ms |
10352 KB |
Output is correct |
2 |
Correct |
1155 ms |
69796 KB |
Output is correct |
3 |
Correct |
1266 ms |
70916 KB |
Output is correct |
4 |
Correct |
1608 ms |
79300 KB |
Output is correct |
5 |
Correct |
1434 ms |
77908 KB |
Output is correct |
6 |
Correct |
1454 ms |
79284 KB |
Output is correct |
7 |
Correct |
666 ms |
45260 KB |
Output is correct |
8 |
Correct |
1132 ms |
81772 KB |
Output is correct |
9 |
Correct |
1344 ms |
80664 KB |
Output is correct |
10 |
Correct |
795 ms |
51932 KB |
Output is correct |
11 |
Correct |
23 ms |
5532 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
101 ms |
10352 KB |
Output is correct |
2 |
Correct |
1155 ms |
69796 KB |
Output is correct |
3 |
Correct |
1266 ms |
70916 KB |
Output is correct |
4 |
Correct |
1608 ms |
79300 KB |
Output is correct |
5 |
Correct |
1434 ms |
77908 KB |
Output is correct |
6 |
Correct |
1454 ms |
79284 KB |
Output is correct |
7 |
Correct |
666 ms |
45260 KB |
Output is correct |
8 |
Correct |
1132 ms |
81772 KB |
Output is correct |
9 |
Correct |
1344 ms |
80664 KB |
Output is correct |
10 |
Correct |
795 ms |
51932 KB |
Output is correct |
11 |
Correct |
23 ms |
5532 KB |
Output is correct |
12 |
Correct |
1248 ms |
70916 KB |
Output is correct |
13 |
Correct |
1578 ms |
79404 KB |
Output is correct |
14 |
Correct |
1440 ms |
77912 KB |
Output is correct |
15 |
Correct |
767 ms |
42316 KB |
Output is correct |
16 |
Correct |
915 ms |
42444 KB |
Output is correct |
17 |
Correct |
984 ms |
42288 KB |
Output is correct |
18 |
Correct |
778 ms |
42184 KB |
Output is correct |
19 |
Correct |
841 ms |
42080 KB |
Output is correct |
20 |
Correct |
818 ms |
44536 KB |
Output is correct |
21 |
Correct |
143 ms |
10824 KB |
Output is correct |
22 |
Correct |
966 ms |
60036 KB |
Output is correct |
23 |
Correct |
768 ms |
61400 KB |
Output is correct |
24 |
Correct |
822 ms |
65276 KB |
Output is correct |
25 |
Correct |
792 ms |
67568 KB |
Output is correct |
26 |
Correct |
776 ms |
72672 KB |
Output is correct |
27 |
Correct |
1575 ms |
78436 KB |
Output is correct |
28 |
Correct |
1426 ms |
79376 KB |
Output is correct |
29 |
Correct |
1644 ms |
79332 KB |
Output is correct |
30 |
Correct |
856 ms |
45244 KB |
Output is correct |
31 |
Correct |
1636 ms |
80636 KB |
Output is correct |
32 |
Correct |
733 ms |
37908 KB |
Output is correct |
33 |
Correct |
770 ms |
39484 KB |
Output is correct |
34 |
Correct |
876 ms |
49476 KB |
Output is correct |
35 |
Correct |
998 ms |
41372 KB |
Output is correct |
36 |
Correct |
894 ms |
35896 KB |
Output is correct |
37 |
Correct |
471 ms |
28520 KB |
Output is correct |
38 |
Correct |
378 ms |
32728 KB |
Output is correct |
39 |
Correct |
913 ms |
53468 KB |
Output is correct |
40 |
Correct |
622 ms |
32932 KB |
Output is correct |
41 |
Correct |
421 ms |
29772 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
256 KB |
Output is correct |
2 |
Correct |
1 ms |
256 KB |
Output is correct |
3 |
Correct |
1 ms |
256 KB |
Output is correct |
4 |
Correct |
0 ms |
256 KB |
Output is correct |
5 |
Correct |
1 ms |
384 KB |
Output is correct |
6 |
Correct |
1 ms |
384 KB |
Output is correct |
7 |
Correct |
1 ms |
384 KB |
Output is correct |
8 |
Correct |
1 ms |
384 KB |
Output is correct |
9 |
Correct |
1 ms |
384 KB |
Output is correct |
10 |
Correct |
1 ms |
384 KB |
Output is correct |
11 |
Correct |
1 ms |
384 KB |
Output is correct |
12 |
Correct |
1 ms |
384 KB |
Output is correct |
13 |
Correct |
1 ms |
384 KB |
Output is correct |
14 |
Correct |
1 ms |
384 KB |
Output is correct |
15 |
Correct |
1 ms |
384 KB |
Output is correct |
16 |
Correct |
1 ms |
384 KB |
Output is correct |
17 |
Correct |
1 ms |
384 KB |
Output is correct |
18 |
Correct |
0 ms |
256 KB |
Output is correct |
19 |
Correct |
0 ms |
256 KB |
Output is correct |
20 |
Correct |
1082 ms |
70852 KB |
Output is correct |
21 |
Correct |
1527 ms |
80620 KB |
Output is correct |
22 |
Correct |
737 ms |
62520 KB |
Output is correct |
23 |
Correct |
817 ms |
64316 KB |
Output is correct |
24 |
Correct |
1020 ms |
63056 KB |
Output is correct |
25 |
Correct |
1168 ms |
70848 KB |
Output is correct |
26 |
Correct |
1109 ms |
78352 KB |
Output is correct |
27 |
Correct |
1543 ms |
79764 KB |
Output is correct |
28 |
Correct |
1326 ms |
73640 KB |
Output is correct |
29 |
Correct |
1089 ms |
82180 KB |
Output is correct |
30 |
Correct |
1314 ms |
82248 KB |
Output is correct |
31 |
Correct |
981 ms |
77200 KB |
Output is correct |
32 |
Correct |
890 ms |
42372 KB |
Output is correct |
33 |
Correct |
670 ms |
34936 KB |
Output is correct |
34 |
Correct |
624 ms |
32348 KB |
Output is correct |
35 |
Correct |
969 ms |
81180 KB |
Output is correct |
36 |
Correct |
42 ms |
4388 KB |
Output is correct |
37 |
Correct |
439 ms |
41952 KB |
Output is correct |
38 |
Correct |
386 ms |
30888 KB |
Output is correct |
39 |
Correct |
395 ms |
35208 KB |
Output is correct |
40 |
Correct |
838 ms |
56052 KB |
Output is correct |
41 |
Correct |
613 ms |
35492 KB |
Output is correct |
42 |
Correct |
388 ms |
31896 KB |
Output is correct |
43 |
Correct |
101 ms |
10352 KB |
Output is correct |
44 |
Correct |
1155 ms |
69796 KB |
Output is correct |
45 |
Correct |
1266 ms |
70916 KB |
Output is correct |
46 |
Correct |
1608 ms |
79300 KB |
Output is correct |
47 |
Correct |
1434 ms |
77908 KB |
Output is correct |
48 |
Correct |
1454 ms |
79284 KB |
Output is correct |
49 |
Correct |
666 ms |
45260 KB |
Output is correct |
50 |
Correct |
1132 ms |
81772 KB |
Output is correct |
51 |
Correct |
1344 ms |
80664 KB |
Output is correct |
52 |
Correct |
795 ms |
51932 KB |
Output is correct |
53 |
Correct |
23 ms |
5532 KB |
Output is correct |
54 |
Correct |
1248 ms |
70916 KB |
Output is correct |
55 |
Correct |
1578 ms |
79404 KB |
Output is correct |
56 |
Correct |
1440 ms |
77912 KB |
Output is correct |
57 |
Correct |
767 ms |
42316 KB |
Output is correct |
58 |
Correct |
915 ms |
42444 KB |
Output is correct |
59 |
Correct |
984 ms |
42288 KB |
Output is correct |
60 |
Correct |
778 ms |
42184 KB |
Output is correct |
61 |
Correct |
841 ms |
42080 KB |
Output is correct |
62 |
Correct |
818 ms |
44536 KB |
Output is correct |
63 |
Correct |
143 ms |
10824 KB |
Output is correct |
64 |
Correct |
966 ms |
60036 KB |
Output is correct |
65 |
Correct |
768 ms |
61400 KB |
Output is correct |
66 |
Correct |
822 ms |
65276 KB |
Output is correct |
67 |
Correct |
792 ms |
67568 KB |
Output is correct |
68 |
Correct |
776 ms |
72672 KB |
Output is correct |
69 |
Correct |
1575 ms |
78436 KB |
Output is correct |
70 |
Correct |
1426 ms |
79376 KB |
Output is correct |
71 |
Correct |
1644 ms |
79332 KB |
Output is correct |
72 |
Correct |
856 ms |
45244 KB |
Output is correct |
73 |
Correct |
1636 ms |
80636 KB |
Output is correct |
74 |
Correct |
733 ms |
37908 KB |
Output is correct |
75 |
Correct |
770 ms |
39484 KB |
Output is correct |
76 |
Correct |
876 ms |
49476 KB |
Output is correct |
77 |
Correct |
998 ms |
41372 KB |
Output is correct |
78 |
Correct |
894 ms |
35896 KB |
Output is correct |
79 |
Correct |
471 ms |
28520 KB |
Output is correct |
80 |
Correct |
378 ms |
32728 KB |
Output is correct |
81 |
Correct |
913 ms |
53468 KB |
Output is correct |
82 |
Correct |
622 ms |
32932 KB |
Output is correct |
83 |
Correct |
421 ms |
29772 KB |
Output is correct |
84 |
Correct |
127 ms |
8708 KB |
Output is correct |
85 |
Correct |
1421 ms |
72784 KB |
Output is correct |
86 |
Correct |
1794 ms |
82044 KB |
Output is correct |
87 |
Correct |
124 ms |
13960 KB |
Output is correct |
88 |
Correct |
174 ms |
14064 KB |
Output is correct |
89 |
Correct |
132 ms |
13940 KB |
Output is correct |
90 |
Correct |
50 ms |
3764 KB |
Output is correct |
91 |
Correct |
2 ms |
512 KB |
Output is correct |
92 |
Correct |
56 ms |
3820 KB |
Output is correct |
93 |
Correct |
601 ms |
34576 KB |
Output is correct |
94 |
Correct |
147 ms |
12528 KB |
Output is correct |
95 |
Correct |
797 ms |
65848 KB |
Output is correct |
96 |
Correct |
885 ms |
65216 KB |
Output is correct |
97 |
Correct |
873 ms |
69620 KB |
Output is correct |
98 |
Correct |
772 ms |
70796 KB |
Output is correct |
99 |
Correct |
1982 ms |
83776 KB |
Output is correct |
100 |
Correct |
1761 ms |
83016 KB |
Output is correct |
101 |
Correct |
2178 ms |
83524 KB |
Output is correct |
102 |
Correct |
882 ms |
47800 KB |
Output is correct |
103 |
Correct |
785 ms |
40612 KB |
Output is correct |
104 |
Correct |
693 ms |
42156 KB |
Output is correct |
105 |
Correct |
837 ms |
52292 KB |
Output is correct |
106 |
Correct |
1217 ms |
56452 KB |
Output is correct |
107 |
Correct |
1147 ms |
57020 KB |
Output is correct |
108 |
Correct |
89 ms |
6844 KB |
Output is correct |
109 |
Correct |
1226 ms |
66216 KB |
Output is correct |
110 |
Correct |
1165 ms |
81748 KB |
Output is correct |
111 |
Correct |
1615 ms |
81164 KB |
Output is correct |
112 |
Correct |
879 ms |
39596 KB |
Output is correct |
113 |
Correct |
849 ms |
38816 KB |
Output is correct |