This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
using namespace std;
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) static_cast<int>((x).size())
template<class T, size_t D>
struct vec : vector<vec<T, D - 1>> {
template<class... Args>
vec(size_t n = 0, Args... args)
: vector<vec<T, D - 1>>(n, vec<T, D - 1>(args...)) {}
};
template<class T>
struct vec<T, 1> : vector<T> {
template<class... Args>
vec(Args... args)
: vector<T>(args...) {}
};
template<class T>
inline bool Minimize(T& a, const T& b) { return a > b ? a = b, true : false; }
template<class T>
inline bool Maximize(T& a, const T& b) { return a < b ? a = b, true : false; }
inline int Next(int i, int n) { return i == n - 1 ? 0 : i + 1; }
inline int Prev(int i, int n) { return !i ? n - 1 : i - 1; }
mt19937 rng(static_cast<uint32_t>(chrono::steady_clock::now().time_since_epoch().count()));
template<int Mod>
struct ModInt {
int a;
ModInt(int t_a = 0) {
a = (t_a < Mod ? (t_a < 0 ? t_a + Mod : t_a) : t_a - Mod);
}
friend istream& operator>>(istream& in_stream, ModInt& o) {
in_stream >> o.a;
o.a = (o.a < Mod ? (o.a < 0 ? o.a + Mod : o.a) : o.a - Mod);
return in_stream;
}
friend ostream& operator<<(ostream& out_stream, const ModInt& o) {
out_stream << o.a;
return out_stream;
}
bool operator!() const { return !a; }
explicit operator bool() const { return !!a; }
ModInt operator-() const { return ModInt() - *this; }
ModInt operator+(const ModInt& o) const { return ModInt(a + o.a); }
ModInt operator-(const ModInt& o) const { return ModInt(a - o.a); }
ModInt operator*(const ModInt& o) const { return ModInt(static_cast<int>(static_cast<int64_t>(a) * o.a % Mod)); }
ModInt operator/(const ModInt& o) const { return *this * o.Inverse(); }
ModInt& operator+=(const ModInt& o) { return *this = *this + o; }
ModInt& operator-=(const ModInt& o) { return *this = *this - o; }
ModInt& operator*=(const ModInt& o) { return *this = *this * o; }
ModInt& operator/=(const ModInt& o) { return *this = *this / o; }
ModInt& operator++() { return *this = *this + ModInt(1); }
ModInt& operator--() { return *this = *this - ModInt(1); }
ModInt Inverse() const { return Power(Mod - 2); }
template<class T>
ModInt Power(T exp) const {
ModInt ret(1), c = *this;
for (; exp; exp >>= 1, c *= c) {
if (exp & 1) {
ret *= c;
}
}
return ret;
}
};
using Mint = ModInt<static_cast<int>(1e9) + 7>;
constexpr int kMod = static_cast<int>(1e9) + 7;
int main() {
ios_base::sync_with_stdio(0); cin.tie(0);
int n_schools; cin >> n_schools;
vec<pair<int, int>, 1> ranges(n_schools);
vec<int, 1> marks; marks.reserve(n_schools << 1);
for (auto& range : ranges) {
cin >> range.first >> range.second; ++range.second;
marks.emplace_back(range.first);
marks.emplace_back(range.second);
}
sort(ALL(marks)); marks.erase(unique(ALL(marks)), marks.end());
vec<Mint, 2> binomials(n_schools + 1, n_schools + 1);
binomials[0][0] = Mint(1);
for (int i = 1; i < SZ(binomials); ++i) {
for (int j = 0; j <= i; ++j) {
binomials[i][j] = (j ? binomials[i - 1][j - 1] : Mint()) + binomials[i - 1][j];
}
}
vec<Mint, 1> inverses(n_schools + 1);
inverses[1] = Mint(1);
for (int i = 2; i < SZ(inverses); ++i) {
inverses[i] = inverses[kMod % i] * Mint(kMod - kMod / i);
}
vec<Mint, 2> f(SZ(marks), n_schools + 1);
f[0][0] = Mint(1);
for (int i = 1; i < SZ(marks); ++i) {
int const n = marks[i] - marks[i - 1];
vec<Mint, 1> binomials_2(min(n_schools, n) + 1);
binomials_2[0] = Mint(1);
for (int j = 1; j < SZ(binomials_2); ++j) {
binomials_2[j] = binomials_2[j - 1] * Mint(n - j + 1) * inverses[j];
}
vec<Mint, 1> g(n_schools + 1);
for (int amount = 1; amount < SZ(g); ++amount) {
for (int j = 1; j <= min(amount, n); ++j) {
g[amount] += binomials_2[j] * binomials[amount - 1][j - 1];
}
}
for (int j = 0; j <= n_schools; ++j) {
f[i][j] += f[i - 1][j];
if (!j || marks[i] <= ranges[j - 1].first || ranges[j - 1].second <= marks[i - 1]) {
continue;
}
int amount = 0;
for (int prev_j = j - 1; ~prev_j; --prev_j) {
amount += ranges[prev_j].first <= marks[i - 1] && marks[i] <= ranges[prev_j].second;
f[i][j] += f[i - 1][prev_j] * g[amount];
}
}
}
cout << accumulate(1 + ALL(f.back()), Mint()) << '\n';
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |