Submission #254892

# Submission time Handle Problem Language Result Execution time Memory
254892 2020-07-30T19:39:11 Z MarcoMeijer Fibonacci representations (CEOI18_fib) C++14
65 / 100
4000 ms 183800 KB
#include <bits/stdc++.h>
using namespace std;

// macros
typedef long long ll;
typedef long double ld;
typedef pair<int, int> ii;
typedef pair<ll, ll> lll;
typedef tuple<int, int, int> iii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vll;
typedef vector<lll> vlll;
#define REP(a,b,c) for(int a=int(b); a<int(c); a++)
#define RE(a,c) REP(a,0,c)
#define RE1(a,c) REP(a,1,c+1)
#define REI(a,b,c) REP(a,b,c+1)
#define REV(a,b,c) for(int a=int(c-1); a>=int(b); a--)
#define FOR(a,b) for(auto& a : b)
#define all(a) a.begin(), a.end()
#define INF 1e9
#define EPS 1e-9
#define pb push_back
#define popb pop_back
#define fi first
#define se second
#define sz size()

// input
template<class T> void IN(T& x) {cin >> x;}
template<class H, class... T> void IN(H& h, T&... t) {IN(h); IN(t...); }

// output
template<class T1, class T2> void OUT(const pair<T1,T2>& x);
template<class T> void OUT(const T& x) {cout << x;}
template<class H, class... T> void OUT(const H& h, const T&... t) {OUT(h); OUT(t...); }
template<class T1, class T2> void OUT(const pair<T1,T2>& x) {OUT(x.fi," ",x.se);}
template<class... T> void OUTL(const T&... t) {OUT(t..., "\n"); }

//===================//
//  Added libraries  //
//===================//

// mod library
ll MOD=1e9+7;

inline ll mod(ll x_) {
    return (x_)%MOD;
}
ll modpow(ll x_, ll N_) {
    if(N_ == 0) return 1;
    ll a = modpow(x_,N_/2);
    a = (a*a)%MOD;
    if(N_%2) a = (a*x_)%MOD;
    return a;
}
ll inv(ll x_) {
    return modpow(x_, MOD-2);
}
class mi {
public:
    mi(ll v=0) {value = v;}
    mi  operator+ (ll rs) {return mod(value+rs);}
    mi  operator- (ll rs) {return mod(value-rs+MOD);}
    mi  operator* (ll rs) {return mod(value*rs);}
    mi  operator/ (ll rs) {return mod(value*inv(rs));}
    mi& operator+=(ll rs) {*this = (*this)+rs; return *this;}
    mi& operator-=(ll rs) {*this = (*this)-rs; return *this;}
    mi& operator*=(ll rs) {*this = (*this)*rs; return *this;}
    mi& operator/=(ll rs) {*this = (*this)/rs; return *this;}
    operator ll&() {return value;}

    ll value;
};
typedef vector<mi> vmi;

//===================//
//end added libraries//
//===================//

void program();
int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
    program();
}


//===================//
//   begin program   //
//===================//

const int MX = 1e6;
int n, a[MX];
map<int, int> mp;
set<int> inq, inpq;
queue<int> q;
int p[MX], m;
mi dp[MX][2];
bool findingPositions = 1;
set<int> positions;
int P[MX], N;
map<int, int> segUpdate;

struct M {
    mi m[2][2];
    mi* operator [] (int i) {return m[i];}
    M operator* (M& rhs) {
        M ans;
        RE(i,2) RE(j,2) RE(k,2) ans[i][j] += m[i][k]*rhs[k][j];
        return ans;
    }
};
struct S {
    int bg, ed;
    M m;
    S(int p = -1) {
        bg = p, ed = p;
        m[0][0] = 1;
        m[1][1] = 1;
        m[0][1] = 0;
        m[1][0] = 0;
    }
    S(S& l, S& r) {
        if(l.bg == -1) {
            *this = r;
            return;
        }
        if(r.bg == -1) {
            *this = l;
            return;
        }
        int dist = r.bg-l.ed;
        M mid;
        bg = l.bg;
        ed = r.ed;
        if((dist%2) == 0) {
            mid.m[0][0] = 1;
            mid.m[0][1] = 1;
        }
        mid.m[1][0] = mi((dist-1)/2);
        mid.m[1][1] = mi((dist-1)/2 + 1);

        m = (l.m * mid) * r.m;
    }
};

S SEG[MX*4];
int Low(int x) {
    return lower_bound(P,P+N,x)-P;
}
void setSeg(int i, int v, int p=0, int l=0, int r=N-1) {
    if(i < l || i > r) return;
    if(l == r) {
        SEG[p] = S(v);
        return;
    }
    int m=(l+r)/2;
    setSeg(i,v,p*2+1,l,m);
    setSeg(i,v,p*2+2,m+1,r);
    SEG[p] = S(SEG[p*2+1], SEG[p*2+2]);
}

void remove(int x) {
    mp.erase(x);
    if(!findingPositions) segUpdate[Low(x)] = -1;
}
void update(int x) {
    auto& am = mp[x];
    if(am == 0) remove(x);

    if(am >= 2) {
        if(inq.count(x)) return;
        q.push(x);
        inq.insert(x);
    } else if(am == 1) {
        if(findingPositions) positions.insert(x);
        else segUpdate[Low(x)] = x;
        if(mp.count(x-1)) {
            inpq.insert(x);
        }
        if(mp.count(x+1)) {
            inpq.insert(x+1);
        }
    }
}
void fix(int x) {
    auto& am = mp[x];
    if(am >= 2) {
        int times = am/2;
        if(am%2) am = 1;
        else am = 0;
        if(x >= 3) {
            mp[x-2] += times;
            mp[x+1] += times;
            update(x-2);
            update(x+1);
        }
        if(x == 2) {
            mp[1] += times;
            mp[3] += times;
            update(1);
            update(3);
        }
        if(x == 1) {
            mp[2] += times;
            update(2);
        }
        update(x);
    }
}
void fix1(int x) {
    auto am1 = mp.find(x-1);
    auto am2 = mp.find(x);
    if(am1 != mp.end() && am2 != mp.end()) {
        am1->se--;
        am2->se--;
        mp[x+1]++;
        update(x-1);
        update(x);
        update(x+1);
    }
}

void program() {
    IN(n);
    RE(i,n) IN(a[i]);

    RE(i,n) {
        mp[a[i]]++;
        update(a[i]);
        while(!q.empty()) {
            int p = q.front(); q.pop();
            fix(p);
            inq.erase(p);
        }
        while(!inpq.empty()) {
            int p = *(--inpq.end());
            fix1(p);
            inpq.erase(p);
        }
    }
    
    N = 0;
    FOR(i,positions) P[N++] = i;

    findingPositions = 0;
    mp.clear();

    RE(i,n) {
        mp[a[i]]++;
        update(a[i]);
        while(!q.empty()) {
            int p = q.front(); q.pop();
            fix(p);
            inq.erase(p);
        }
        while(!inpq.empty()) {
            int p = *(--inpq.end());
            fix1(p);
            inpq.erase(p);
        }

        FOR(it,segUpdate) {
            setSeg(it.first, it.se);
        }
        segUpdate.clear();

        S ans(0);
        ans = S(ans,SEG[0]);
        OUTL(ll(ans.m[1][1]));
    }
}
# Verdict Execution time Memory Grader output
1 Correct 86 ms 172536 KB Output is correct
2 Correct 86 ms 172536 KB Output is correct
3 Correct 83 ms 172536 KB Output is correct
4 Correct 84 ms 172592 KB Output is correct
5 Correct 90 ms 172792 KB Output is correct
6 Correct 93 ms 172544 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 86 ms 172536 KB Output is correct
2 Correct 86 ms 172536 KB Output is correct
3 Correct 83 ms 172536 KB Output is correct
4 Correct 84 ms 172592 KB Output is correct
5 Correct 90 ms 172792 KB Output is correct
6 Correct 93 ms 172544 KB Output is correct
7 Correct 91 ms 172536 KB Output is correct
8 Correct 91 ms 172564 KB Output is correct
9 Correct 89 ms 172548 KB Output is correct
10 Correct 87 ms 172664 KB Output is correct
11 Correct 87 ms 172536 KB Output is correct
12 Correct 84 ms 172536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 84 ms 172540 KB Output is correct
2 Correct 85 ms 172536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 86 ms 172536 KB Output is correct
2 Correct 86 ms 172536 KB Output is correct
3 Correct 83 ms 172536 KB Output is correct
4 Correct 84 ms 172592 KB Output is correct
5 Correct 90 ms 172792 KB Output is correct
6 Correct 93 ms 172544 KB Output is correct
7 Correct 91 ms 172536 KB Output is correct
8 Correct 91 ms 172564 KB Output is correct
9 Correct 89 ms 172548 KB Output is correct
10 Correct 87 ms 172664 KB Output is correct
11 Correct 87 ms 172536 KB Output is correct
12 Correct 84 ms 172536 KB Output is correct
13 Correct 84 ms 172540 KB Output is correct
14 Correct 85 ms 172536 KB Output is correct
15 Correct 87 ms 172536 KB Output is correct
16 Correct 89 ms 172536 KB Output is correct
17 Correct 94 ms 172536 KB Output is correct
18 Correct 85 ms 172536 KB Output is correct
19 Correct 84 ms 172536 KB Output is correct
20 Correct 92 ms 172536 KB Output is correct
21 Correct 91 ms 172536 KB Output is correct
22 Correct 88 ms 172540 KB Output is correct
23 Correct 86 ms 172664 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 92 ms 172564 KB Output is correct
2 Correct 682 ms 183796 KB Output is correct
3 Correct 646 ms 183800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 86 ms 172536 KB Output is correct
2 Correct 86 ms 172536 KB Output is correct
3 Correct 83 ms 172536 KB Output is correct
4 Correct 84 ms 172592 KB Output is correct
5 Correct 90 ms 172792 KB Output is correct
6 Correct 93 ms 172544 KB Output is correct
7 Correct 91 ms 172536 KB Output is correct
8 Correct 91 ms 172564 KB Output is correct
9 Correct 89 ms 172548 KB Output is correct
10 Correct 87 ms 172664 KB Output is correct
11 Correct 87 ms 172536 KB Output is correct
12 Correct 84 ms 172536 KB Output is correct
13 Correct 84 ms 172540 KB Output is correct
14 Correct 85 ms 172536 KB Output is correct
15 Correct 87 ms 172536 KB Output is correct
16 Correct 89 ms 172536 KB Output is correct
17 Correct 94 ms 172536 KB Output is correct
18 Correct 85 ms 172536 KB Output is correct
19 Correct 84 ms 172536 KB Output is correct
20 Correct 92 ms 172536 KB Output is correct
21 Correct 91 ms 172536 KB Output is correct
22 Correct 88 ms 172540 KB Output is correct
23 Correct 86 ms 172664 KB Output is correct
24 Correct 92 ms 172564 KB Output is correct
25 Correct 682 ms 183796 KB Output is correct
26 Correct 646 ms 183800 KB Output is correct
27 Correct 219 ms 175896 KB Output is correct
28 Correct 327 ms 178168 KB Output is correct
29 Correct 235 ms 172920 KB Output is correct
30 Correct 365 ms 178276 KB Output is correct
31 Execution timed out 4096 ms 173160 KB Time limit exceeded
32 Halted 0 ms 0 KB -