Submission #254886

# Submission time Handle Problem Language Result Execution time Memory
254886 2020-07-30T19:30:00 Z MarcoMeijer Fibonacci representations (CEOI18_fib) C++14
65 / 100
4000 ms 102552 KB
#include <bits/stdc++.h>
using namespace std;

// macros
typedef long long ll;
typedef long double ld;
typedef pair<int, int> ii;
typedef pair<ll, ll> lll;
typedef tuple<int, int, int> iii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vll;
typedef vector<lll> vlll;
#define REP(a,b,c) for(int a=int(b); a<int(c); a++)
#define RE(a,c) REP(a,0,c)
#define RE1(a,c) REP(a,1,c+1)
#define REI(a,b,c) REP(a,b,c+1)
#define REV(a,b,c) for(int a=int(c-1); a>=int(b); a--)
#define FOR(a,b) for(auto& a : b)
#define all(a) a.begin(), a.end()
#define INF 1e9
#define EPS 1e-9
#define pb push_back
#define popb pop_back
#define fi first
#define se second
#define sz size()

// input
template<class T> void IN(T& x) {cin >> x;}
template<class H, class... T> void IN(H& h, T&... t) {IN(h); IN(t...); }

// output
template<class T1, class T2> void OUT(const pair<T1,T2>& x);
template<class T> void OUT(const T& x) {cout << x;}
template<class H, class... T> void OUT(const H& h, const T&... t) {OUT(h); OUT(t...); }
template<class T1, class T2> void OUT(const pair<T1,T2>& x) {OUT(x.fi," ",x.se);}
template<class... T> void OUTL(const T&... t) {OUT(t..., "\n"); }

//===================//
//  Added libraries  //
//===================//

// mod library
ll MOD=1e9+7;

inline ll mod(ll x_) {
    return (x_)%MOD;
}
ll modpow(ll x_, ll N_) {
    if(N_ == 0) return 1;
    ll a = modpow(x_,N_/2);
    a = (a*a)%MOD;
    if(N_%2) a = (a*x_)%MOD;
    return a;
}
ll inv(ll x_) {
    return modpow(x_, MOD-2);
}
class mi {
public:
    mi(ll v=0) {value = v;}
    mi  operator+ (ll rs) {return mod(value+rs);}
    mi  operator- (ll rs) {return mod(value-rs+MOD);}
    mi  operator* (ll rs) {return mod(value*rs);}
    mi  operator/ (ll rs) {return mod(value*inv(rs));}
    mi& operator+=(ll rs) {*this = (*this)+rs; return *this;}
    mi& operator-=(ll rs) {*this = (*this)-rs; return *this;}
    mi& operator*=(ll rs) {*this = (*this)*rs; return *this;}
    mi& operator/=(ll rs) {*this = (*this)/rs; return *this;}
    operator ll&() {return value;}

    ll value;
};
typedef vector<mi> vmi;

//===================//
//end added libraries//
//===================//

void program();
int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
    program();
}


//===================//
//   begin program   //
//===================//

const int MX = 5e5;
int n, a[MX];
map<int, int> mp;
set<int> ones;
set<int> inq, inpq;
queue<int> q;
priority_queue<int> pq;
int p[MX], m;
mi dp[MX][2];
bool findingPositions = 1;
set<int> positions;
int P[MX], N;
map<int, int> segUpdate;

struct M {
    mi m[2][2];
    mi* operator [] (int i) {return m[i];}
    M operator* (M& rhs) {
        M ans;
        RE(i,2) RE(j,2) RE(k,2) ans[i][j] += m[i][k]*rhs[k][j];
        return ans;
    }
};
struct S {
    int bg, ed;
    M m;
    S(int p = -1) {
        bg = p, ed = p;
        m[0][0] = 1;
        m[1][1] = 1;
        m[0][1] = 0;
        m[1][0] = 0;
    }
    S(S& l, S& r) {
        if(l.bg == -1) {
            *this = r;
            return;
        }
        if(r.bg == -1) {
            *this = l;
            return;
        }
        int dist = r.bg-l.ed;
        M mid;
        bg = l.bg;
        ed = r.ed;
        if((dist%2) == 0) {
            mid.m[0][0] = 1;
            mid.m[0][1] = 1;
        }
        mid.m[1][0] = mi((dist-1)/2);
        mid.m[1][1] = mi((dist-1)/2 + 1);

        m = (l.m * mid) * r.m;
    }
};

S SEG[MX*4];
int Low(int x) {
    return lower_bound(P,P+N,x)-P;
}
void setSeg(int i, int v, int p=0, int l=0, int r=N-1) {
    if(i < l || i > r) return;
    if(l == r) {
        SEG[p] = S(v);
        return;
    }
    int m=(l+r)/2;
    setSeg(i,v,p*2+1,l,m);
    setSeg(i,v,p*2+2,m+1,r);
    SEG[p] = S(SEG[p*2+1], SEG[p*2+2]);
}

void remove(int x) {
    mp.erase(x);
    if(!findingPositions) segUpdate[Low(x)] = -1;
}
void update(int x) {
    auto& am = mp[x];
    if(am == 0) remove(x);
    if(am == 1) ones.insert(x);
    else        ones.erase (x);

    if(am >= 2) {
        if(inq.count(x)) return;
        q.push(x);
        inq.insert(x);
    } else if(am == 1) {
        if(inpq.count(x)) return;
        if(findingPositions) positions.insert(x);
        else segUpdate[Low(x)] = x;
        if(mp.count(x-1)) {
            pq.push(x);
            inpq.insert(x);
        }
        if(!inpq.count(x+1) && mp.count(x+1)) {
            pq.push(x+1);
            inpq.insert(x+1);
        }
    }
}
void fix(int x) {
    auto& am = mp[x];
    if(am >= 2) {
        int times = am/2;
        if(am%2) am = 1;
        else am = 0;
        if(x >= 3) {
            mp[x-2] += times;
            mp[x+1] += times;
            update(x-2);
            update(x+1);
        }
        if(x == 2) {
            mp[1] += times;
            mp[3] += times;
            update(1);
            update(3);
        }
        if(x == 1) {
            mp[2] += times;
            update(2);
        }
        update(x);
    }
}
void fix1(int x) {
    int am = ones.count(x);
    if(am == 1 && ones.count(x-1)) {
        mp[x-1]--;
        mp[x]--;
        mp[x+1]++;
        update(x-1);
        update(x);
        update(x+1);
    }
}

void program() {
    IN(n);
    RE(i,n) IN(a[i]);

    RE(i,n) {
        mp[a[i]]++;
        update(a[i]);
        while(!q.empty()) {
            int p = q.front(); q.pop();
            fix(p);
            inq.erase(p);
        }
        while(!pq.empty()) {
            int p = pq.top(); pq.pop();
            fix1(p);
            inpq.erase(p);
        }
    }
    
    N = 0;
    FOR(i,positions) P[N++] = i;

    findingPositions = 0;
    mp.clear();

    RE(i,n) {
        mp[a[i]]++;
        update(a[i]);
        while(!q.empty()) {
            int p = q.front(); q.pop();
            fix(p);
            inq.erase(p);
        }
        while(!pq.empty()) {
            int p = pq.top(); pq.pop();
            fix1(p);
            inpq.erase(p);
        }

        FOR(it,segUpdate) {
            setSeg(it.first, it.se);
        }
        segUpdate.clear();

        S ans(0);
        ans = S(ans,SEG[0]);
        OUTL(ll(ans.m[1][1]));
    }
}
# Verdict Execution time Memory Grader output
1 Correct 44 ms 86392 KB Output is correct
2 Correct 52 ms 86392 KB Output is correct
3 Correct 44 ms 86392 KB Output is correct
4 Correct 52 ms 86392 KB Output is correct
5 Correct 45 ms 86396 KB Output is correct
6 Correct 53 ms 86392 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 44 ms 86392 KB Output is correct
2 Correct 52 ms 86392 KB Output is correct
3 Correct 44 ms 86392 KB Output is correct
4 Correct 52 ms 86392 KB Output is correct
5 Correct 45 ms 86396 KB Output is correct
6 Correct 53 ms 86392 KB Output is correct
7 Correct 44 ms 86392 KB Output is correct
8 Correct 54 ms 86396 KB Output is correct
9 Correct 49 ms 86456 KB Output is correct
10 Correct 45 ms 86392 KB Output is correct
11 Correct 45 ms 86392 KB Output is correct
12 Correct 46 ms 86392 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 44 ms 86392 KB Output is correct
2 Correct 44 ms 86520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 44 ms 86392 KB Output is correct
2 Correct 52 ms 86392 KB Output is correct
3 Correct 44 ms 86392 KB Output is correct
4 Correct 52 ms 86392 KB Output is correct
5 Correct 45 ms 86396 KB Output is correct
6 Correct 53 ms 86392 KB Output is correct
7 Correct 44 ms 86392 KB Output is correct
8 Correct 54 ms 86396 KB Output is correct
9 Correct 49 ms 86456 KB Output is correct
10 Correct 45 ms 86392 KB Output is correct
11 Correct 45 ms 86392 KB Output is correct
12 Correct 46 ms 86392 KB Output is correct
13 Correct 44 ms 86392 KB Output is correct
14 Correct 44 ms 86520 KB Output is correct
15 Correct 45 ms 86392 KB Output is correct
16 Correct 51 ms 86496 KB Output is correct
17 Correct 46 ms 86520 KB Output is correct
18 Correct 54 ms 86648 KB Output is correct
19 Correct 53 ms 86392 KB Output is correct
20 Correct 59 ms 86452 KB Output is correct
21 Correct 51 ms 86520 KB Output is correct
22 Correct 54 ms 86520 KB Output is correct
23 Correct 49 ms 86520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 53 ms 86520 KB Output is correct
2 Correct 879 ms 102552 KB Output is correct
3 Correct 881 ms 102392 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 44 ms 86392 KB Output is correct
2 Correct 52 ms 86392 KB Output is correct
3 Correct 44 ms 86392 KB Output is correct
4 Correct 52 ms 86392 KB Output is correct
5 Correct 45 ms 86396 KB Output is correct
6 Correct 53 ms 86392 KB Output is correct
7 Correct 44 ms 86392 KB Output is correct
8 Correct 54 ms 86396 KB Output is correct
9 Correct 49 ms 86456 KB Output is correct
10 Correct 45 ms 86392 KB Output is correct
11 Correct 45 ms 86392 KB Output is correct
12 Correct 46 ms 86392 KB Output is correct
13 Correct 44 ms 86392 KB Output is correct
14 Correct 44 ms 86520 KB Output is correct
15 Correct 45 ms 86392 KB Output is correct
16 Correct 51 ms 86496 KB Output is correct
17 Correct 46 ms 86520 KB Output is correct
18 Correct 54 ms 86648 KB Output is correct
19 Correct 53 ms 86392 KB Output is correct
20 Correct 59 ms 86452 KB Output is correct
21 Correct 51 ms 86520 KB Output is correct
22 Correct 54 ms 86520 KB Output is correct
23 Correct 49 ms 86520 KB Output is correct
24 Correct 53 ms 86520 KB Output is correct
25 Correct 879 ms 102552 KB Output is correct
26 Correct 881 ms 102392 KB Output is correct
27 Correct 210 ms 91256 KB Output is correct
28 Correct 376 ms 94576 KB Output is correct
29 Correct 236 ms 86776 KB Output is correct
30 Correct 380 ms 94328 KB Output is correct
31 Execution timed out 4035 ms 87572 KB Time limit exceeded
32 Halted 0 ms 0 KB -