Submission #254875

# Submission time Handle Problem Language Result Execution time Memory
254875 2020-07-30T19:05:55 Z MarcoMeijer Fibonacci representations (CEOI18_fib) C++14
65 / 100
4000 ms 98356 KB
#include <bits/stdc++.h>
using namespace std;

// macros
typedef long long ll;
typedef long double ld;
typedef pair<int, int> ii;
typedef pair<ll, ll> lll;
typedef tuple<int, int, int> iii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vll;
typedef vector<lll> vlll;
#define REP(a,b,c) for(int a=int(b); a<int(c); a++)
#define RE(a,c) REP(a,0,c)
#define RE1(a,c) REP(a,1,c+1)
#define REI(a,b,c) REP(a,b,c+1)
#define REV(a,b,c) for(int a=int(c-1); a>=int(b); a--)
#define FOR(a,b) for(auto& a : b)
#define all(a) a.begin(), a.end()
#define INF 1e9
#define EPS 1e-9
#define pb push_back
#define popb pop_back
#define fi first
#define se second
#define sz size()

// input
template<class T> void IN(T& x) {cin >> x;}
template<class H, class... T> void IN(H& h, T&... t) {IN(h); IN(t...); }

// output
template<class T1, class T2> void OUT(const pair<T1,T2>& x);
template<class T> void OUT(const T& x) {cout << x;}
template<class H, class... T> void OUT(const H& h, const T&... t) {OUT(h); OUT(t...); }
template<class T1, class T2> void OUT(const pair<T1,T2>& x) {OUT(x.fi," ",x.se);}
template<class... T> void OUTL(const T&... t) {OUT(t..., "\n"); }

//===================//
//  Added libraries  //
//===================//

// mod library
ll MOD=1e9+7;

inline ll mod(ll x_) {
    return (x_)%MOD;
}
ll modpow(ll x_, ll N_) {
    if(N_ == 0) return 1;
    ll a = modpow(x_,N_/2);
    a = (a*a)%MOD;
    if(N_%2) a = (a*x_)%MOD;
    return a;
}
ll inv(ll x_) {
    return modpow(x_, MOD-2);
}
class mi {
public:
    mi(ll v=0) {value = v;}
    mi  operator+ (ll rs) {return mod(value+rs);}
    mi  operator- (ll rs) {return mod(value-rs+MOD);}
    mi  operator* (ll rs) {return mod(value*rs);}
    mi  operator/ (ll rs) {return mod(value*inv(rs));}
    mi& operator+=(ll rs) {*this = (*this)+rs; return *this;}
    mi& operator-=(ll rs) {*this = (*this)-rs; return *this;}
    mi& operator*=(ll rs) {*this = (*this)*rs; return *this;}
    mi& operator/=(ll rs) {*this = (*this)/rs; return *this;}
    operator ll&() {return value;}

    ll value;
};
typedef vector<mi> vmi;

//===================//
//end added libraries//
//===================//

void program();
int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
    program();
}


//===================//
//   begin program   //
//===================//

const int MX = 5e5;
int n, a[MX];
map<int, int> mp;
set<int> inq;
queue<int> q;
int p[MX], m;
mi dp[MX][2];
bool findingPositions = 1;
set<int> positions;
int P[MX], N;

struct M {
    mi m[2][2];
    mi* operator [] (int i) {return m[i];}
    M operator* (M& rhs) {
        M ans;
        RE(i,2) RE(j,2) RE(k,2) ans[i][j] += m[i][k]*rhs[k][j];
        return ans;
    }
};
struct S {
    int bg, ed;
    M m;
    S(int p = -1) {
        bg = p, ed = p;
        m[0][0] = 1;
        m[1][1] = 1;
        m[0][1] = 0;
        m[1][0] = 0;
    }
    S(S& l, S& r) {
        if(l.bg == -1) {
            *this = r;
            return;
        }
        if(r.bg == -1) {
            *this = l;
            return;
        }
        int dist = r.bg-l.ed;
        M mid;
        bg = l.bg;
        ed = r.ed;
        if((dist%2) == 0) {
            mid.m[0][0] = 1;
            mid.m[0][1] = 1;
        }
        mid.m[1][0] = mi((dist-1)/2);
        mid.m[1][1] = mi((dist-1)/2 + 1);

        m = (l.m * mid) * r.m;
    }
};

S SEG[MX*4];
int Low(int x) {
    return lower_bound(P,P+N,x)-P;
}
void setSeg(int i, int v, int p=0, int l=0, int r=N-1) {
    if(i < l || i > r) return;
    if(l == r) {
        SEG[p] = S(v);
        return;
    }
    int m=(l+r)/2;
    setSeg(i,v,p*2+1,l,m);
    setSeg(i,v,p*2+2,m+1,r);
    SEG[p] = S(SEG[p*2+1], SEG[p*2+2]);
}

void tryAdd(int x) {
    if(inq.count(x)) return;
    if(findingPositions) positions.insert(x);
    int am = mp[x];
    if(am >= 2) {
        q.push(x);
        inq.insert(x);
    }
    else if(am == 1) {
        setSeg(Low(x), x);
        if(mp.count(x-1) && mp[x-1] == 1) {
            q.push(x);
            inq.insert(x);
        }
        if(mp.count(x+1) && mp[x+1] == 1) {
            q.push(x+1);
            inq.insert(x+1);
        }
    }
}
void remove(int x) {
    mp.erase(x);
    if(!findingPositions) setSeg(Low(x), -1);
}
void fix(int x) {
    int am = mp[x];
    if(am >= 2) {
        int times = am/2;
        if(am%2) mp[x] = 1;
        else remove(x);
        if(x >= 3) {
            mp[x-2] += times;
            mp[x+1] += times;
            tryAdd(x-2);
            tryAdd(x+1);
        }
        if(x == 2) {
            mp[1] += times;
            mp[3] += times;
            tryAdd(1);
            tryAdd(3);
        }
        if(x == 1) {
            mp[2] += times;
            tryAdd(2);
        }
        tryAdd(x);
    } else {
        int oam = mp.count(x-1) ? mp[x-1] : 0;
        if(am == 1 && oam>=1) {
            mp[x-1]--;
            mp[x]--;
            if(oam == 1) remove(x-1);
            remove(x);
            mp[x+1]++;
            tryAdd(x+1);
        }
    }
}

void program() {
    IN(n);
    RE(i,n) IN(a[i]);

    RE(i,n) {
        mp[a[i]]++;
        tryAdd(a[i]);
        while(!q.empty()) {
            int p = q.front(); q.pop();
            fix(p);
            inq.erase(p);
        }
    }
    
    N = 0;
    FOR(i,positions) P[N++] = i;

    findingPositions = 0;
    mp.clear();

    RE(i,n) {
        mp[a[i]]++;
        tryAdd(a[i]);
        while(!q.empty()) {
            int p = q.front(); q.pop();
            fix(p);
            inq.erase(p);
        }

        S ans(0);
        ans = S(ans,SEG[0]);
        OUTL(ll(ans.m[1][1]));
    }
}
# Verdict Execution time Memory Grader output
1 Correct 43 ms 86392 KB Output is correct
2 Correct 42 ms 86392 KB Output is correct
3 Correct 42 ms 86520 KB Output is correct
4 Correct 42 ms 86392 KB Output is correct
5 Correct 42 ms 86460 KB Output is correct
6 Correct 44 ms 86392 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 43 ms 86392 KB Output is correct
2 Correct 42 ms 86392 KB Output is correct
3 Correct 42 ms 86520 KB Output is correct
4 Correct 42 ms 86392 KB Output is correct
5 Correct 42 ms 86460 KB Output is correct
6 Correct 44 ms 86392 KB Output is correct
7 Correct 41 ms 86392 KB Output is correct
8 Correct 43 ms 86520 KB Output is correct
9 Correct 43 ms 86392 KB Output is correct
10 Correct 46 ms 86520 KB Output is correct
11 Correct 42 ms 86392 KB Output is correct
12 Correct 43 ms 86392 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 86396 KB Output is correct
2 Correct 42 ms 86520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 43 ms 86392 KB Output is correct
2 Correct 42 ms 86392 KB Output is correct
3 Correct 42 ms 86520 KB Output is correct
4 Correct 42 ms 86392 KB Output is correct
5 Correct 42 ms 86460 KB Output is correct
6 Correct 44 ms 86392 KB Output is correct
7 Correct 41 ms 86392 KB Output is correct
8 Correct 43 ms 86520 KB Output is correct
9 Correct 43 ms 86392 KB Output is correct
10 Correct 46 ms 86520 KB Output is correct
11 Correct 42 ms 86392 KB Output is correct
12 Correct 43 ms 86392 KB Output is correct
13 Correct 41 ms 86396 KB Output is correct
14 Correct 42 ms 86520 KB Output is correct
15 Correct 45 ms 86520 KB Output is correct
16 Correct 41 ms 86392 KB Output is correct
17 Correct 42 ms 86520 KB Output is correct
18 Correct 42 ms 86480 KB Output is correct
19 Correct 42 ms 86396 KB Output is correct
20 Correct 50 ms 86392 KB Output is correct
21 Correct 46 ms 86520 KB Output is correct
22 Correct 44 ms 86520 KB Output is correct
23 Correct 44 ms 86520 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 86520 KB Output is correct
2 Correct 605 ms 98212 KB Output is correct
3 Correct 585 ms 98356 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 43 ms 86392 KB Output is correct
2 Correct 42 ms 86392 KB Output is correct
3 Correct 42 ms 86520 KB Output is correct
4 Correct 42 ms 86392 KB Output is correct
5 Correct 42 ms 86460 KB Output is correct
6 Correct 44 ms 86392 KB Output is correct
7 Correct 41 ms 86392 KB Output is correct
8 Correct 43 ms 86520 KB Output is correct
9 Correct 43 ms 86392 KB Output is correct
10 Correct 46 ms 86520 KB Output is correct
11 Correct 42 ms 86392 KB Output is correct
12 Correct 43 ms 86392 KB Output is correct
13 Correct 41 ms 86396 KB Output is correct
14 Correct 42 ms 86520 KB Output is correct
15 Correct 45 ms 86520 KB Output is correct
16 Correct 41 ms 86392 KB Output is correct
17 Correct 42 ms 86520 KB Output is correct
18 Correct 42 ms 86480 KB Output is correct
19 Correct 42 ms 86396 KB Output is correct
20 Correct 50 ms 86392 KB Output is correct
21 Correct 46 ms 86520 KB Output is correct
22 Correct 44 ms 86520 KB Output is correct
23 Correct 44 ms 86520 KB Output is correct
24 Correct 41 ms 86520 KB Output is correct
25 Correct 605 ms 98212 KB Output is correct
26 Correct 585 ms 98356 KB Output is correct
27 Correct 171 ms 90220 KB Output is correct
28 Correct 288 ms 92540 KB Output is correct
29 Correct 191 ms 86904 KB Output is correct
30 Correct 328 ms 92504 KB Output is correct
31 Execution timed out 4051 ms 87960 KB Time limit exceeded
32 Halted 0 ms 0 KB -