Submission #253901

# Submission time Handle Problem Language Result Execution time Memory
253901 2020-07-29T05:21:29 Z IgorI Cats or Dogs (JOI18_catdog) C++17
100 / 100
338 ms 64684 KB
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int INF = 1e8;
const int N = 100002;

struct Table{
    int a[2][2];
};

struct Sollution{
    vector<Table> tree;
    void build(int L, int R, int V)
    {
        if (L + 1 == R)
        {
            tree[V].a[0][0] = 0;
            tree[V].a[0][1] = INF;
            tree[V].a[1][0] = INF;
            tree[V].a[1][1] = 0;
            return;
        }
        tree[V].a[0][0] = 0;
        tree[V].a[1][0] = 1;
        tree[V].a[0][1] = 1;
        tree[V].a[1][1] = 0;
        int M = (L + R) / 2;
        build(L, M, 2 * V + 1);
        build(M, R, 2 * V + 2);
    }
    Sollution(int _n)
    {
        tree.resize(4 * _n);
        build(0, _n, 0);
    }
    void __Change(int pos, int cost0, int cost1, int L, int R, int V)
    {
        if (L + 1 == R)
        {
            tree[V].a[0][0] += cost0;
            tree[V].a[1][1] += cost1;
            return;
        }
        int M = (L + R) / 2;
        if (pos < M) __Change(pos, cost0, cost1, L, M, 2 * V + 1);
        else __Change(pos, cost0, cost1, M, R, 2 * V + 2);
        for (int le = 0; le < 2; le++)
        {
            for (int ri = 0; ri < 2; ri++)
            {
                tree[V].a[le][ri] = min(min(tree[2 * V + 1].a[le][0] + tree[2 * V + 2].a[0][ri],
                                            tree[2 * V + 1].a[le][1] + tree[2 * V + 2].a[1][ri]),
                                        min(tree[2 * V + 1].a[le][0] + tree[2 * V + 2].a[1][ri] + 1,
                                            tree[2 * V + 1].a[le][1] + tree[2 * V + 2].a[0][ri] + 1));
            }
        }
    }
    void Change(int pos, int cost0, int cost1)
    {
        __Change(pos, cost0, cost1, 0, tree.size() / 4, 0);
    }
    Table Cost()
    {
        return tree[0];
    }
};

ll n;
vector<int> graph[N];
ll x[N];
ll papa[N];
ll sz[N];

int main_child[N];
vector<int> other_child[N];
vector<vector<int> > route;
vector<Sollution> hld;
int route_pos[N];
int route_id[N];

void dfs1(int v, int p)
{
    papa[v] = p;
    sz[v] = 1;
    for (auto u : graph[v]) if (u != p)
    {
        dfs1(u, v);
        sz[v] += sz[u];
    }
}

void dfs2(int v, int p)
{
    int mxsz = 0, id = -1;
    for (auto u : graph[v]) if (u != p)
    {
        if (sz[u] > mxsz)
        {
            mxsz = sz[u];
            id = u;
        }
    }
    main_child[v] = id;
    for (auto u : graph[v]) if (u != p)
    {
        dfs2(u, v);
        if (u != id) other_child[v].push_back(u);
    }
}

int answer()
{
    int x = INF;
    Table T = hld[0].Cost();
    for (int i = 0; i < 2; i++)
    {
        for (int j = 0; j < 2; j++)
        {
            x = min(x, T.a[i][j]);
        }
    }
    return x;
}

void initialize(int n0, vector<int> a, vector<int> b)
{
    n = n0;
    for (int i = 0; i < n - 1; i++)
    {
        a[i]--, b[i]--;
        graph[a[i]].push_back(b[i]);
        graph[b[i]].push_back(a[i]);
    }
    for (int i = 0; i < n; i++)
    {
        x[i] = -1;
    }
    dfs1(0, 0);
    dfs2(0, 0);
    for (int i = 0; i < n; i++)
    {
        route_id[i] = -1;
        route_pos[i] = -1;
    }
    for (int i = 0; i < n; i++)
    {
        if (route_id[i] == -1)
        {
            vector<int> r;
            int x = i;
            while (x != -1)
            {
                r.push_back(x);
                x = main_child[x];
            }
            for (int j = 0; j < r.size(); j++)
            {
                route_id[r[j]] = route.size();
                route_pos[r[j]] = j;
            }
            route.push_back(r);
            hld.push_back(Sollution(r.size()));
        }
    }
}

void Change(int v, int cost0, int cost1)
{
    int x = route_id[v];
    int y = route_pos[v];
    Table oldT = hld[x].Cost();
    int oldminc0 = min(oldT.a[0][0], oldT.a[0][1]);
    int oldminc1 = min(oldT.a[1][0], oldT.a[1][1]);
    int oldd0 = min(oldminc0, oldminc1 + 1);
    int oldd1 = min(oldminc0 + 1, oldminc1);
    hld[x].Change(y, cost0, cost1);
    Table T = hld[x].Cost();
    int minc0 = min(T.a[0][0], T.a[0][1]);
    int minc1 = min(T.a[1][0], T.a[1][1]);
    int d0 = min(minc0, minc1 + 1);
    int d1 = min(minc0 + 1, minc1);
    v = route[x][0];
    if (v == 0) return;
    v = papa[v];
    Change(v, d0 - oldd0, d1 - oldd1);
}

int cat(int v)
{
    v--;
    x[v] = 0;
    Change(v, 0, INF);
    return answer();
}

int dog(int v)
{
    v--;
    x[v] = 1;
    Change(v, INF, 0);
    return answer();
}

int neighbor(int v)
{
    v--;
    if (x[v] == 0) Change(v, 0, -INF);
    if (x[v] == 1) Change(v, -INF, 0);
    x[v] = -1;
    return answer();
}

#ifdef LOCAL
int main()
{
    int n;
    cin >> n;
    vector<int> a(n - 1), b(n - 1);
    for (int i = 0; i < n - 1; i++)
    {
        cin >> a[i] >> b[i];
    }
    initialize(n, a, b);
    int q;
    cin >> q;
    while (q--)
    {
        int t, v;
        cin >> t >> v;
        if (t == 1) cout << cat(v) << endl;
        if (t == 2) cout << dog(v) << endl;
        if (t == 3) cout << neighbor(v) << endl;
    }
}
#endif // LOCAL

Compilation message

catdog.cpp: In function 'void initialize(int, std::vector<int>, std::vector<int>)':
catdog.cpp:159:31: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             for (int j = 0; j < r.size(); j++)
                             ~~^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4992 KB Output is correct
2 Correct 3 ms 4992 KB Output is correct
3 Correct 3 ms 4992 KB Output is correct
4 Correct 3 ms 4992 KB Output is correct
5 Correct 3 ms 4992 KB Output is correct
6 Correct 3 ms 4992 KB Output is correct
7 Correct 3 ms 4992 KB Output is correct
8 Correct 4 ms 4992 KB Output is correct
9 Correct 3 ms 4992 KB Output is correct
10 Correct 3 ms 4992 KB Output is correct
11 Correct 4 ms 4992 KB Output is correct
12 Correct 3 ms 4992 KB Output is correct
13 Correct 3 ms 4992 KB Output is correct
14 Correct 3 ms 4992 KB Output is correct
15 Correct 3 ms 4992 KB Output is correct
16 Correct 3 ms 4992 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4992 KB Output is correct
2 Correct 3 ms 4992 KB Output is correct
3 Correct 3 ms 4992 KB Output is correct
4 Correct 3 ms 4992 KB Output is correct
5 Correct 3 ms 4992 KB Output is correct
6 Correct 3 ms 4992 KB Output is correct
7 Correct 3 ms 4992 KB Output is correct
8 Correct 4 ms 4992 KB Output is correct
9 Correct 3 ms 4992 KB Output is correct
10 Correct 3 ms 4992 KB Output is correct
11 Correct 4 ms 4992 KB Output is correct
12 Correct 3 ms 4992 KB Output is correct
13 Correct 3 ms 4992 KB Output is correct
14 Correct 3 ms 4992 KB Output is correct
15 Correct 3 ms 4992 KB Output is correct
16 Correct 3 ms 4992 KB Output is correct
17 Correct 4 ms 5248 KB Output is correct
18 Correct 4 ms 5248 KB Output is correct
19 Correct 4 ms 5248 KB Output is correct
20 Correct 3 ms 5120 KB Output is correct
21 Correct 3 ms 5120 KB Output is correct
22 Correct 4 ms 5120 KB Output is correct
23 Correct 4 ms 5248 KB Output is correct
24 Correct 4 ms 5248 KB Output is correct
25 Correct 5 ms 5120 KB Output is correct
26 Correct 4 ms 5120 KB Output is correct
27 Correct 3 ms 5120 KB Output is correct
28 Correct 3 ms 5248 KB Output is correct
29 Correct 6 ms 5248 KB Output is correct
30 Correct 3 ms 5120 KB Output is correct
31 Correct 3 ms 5248 KB Output is correct
32 Correct 3 ms 5120 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4992 KB Output is correct
2 Correct 3 ms 4992 KB Output is correct
3 Correct 3 ms 4992 KB Output is correct
4 Correct 3 ms 4992 KB Output is correct
5 Correct 3 ms 4992 KB Output is correct
6 Correct 3 ms 4992 KB Output is correct
7 Correct 3 ms 4992 KB Output is correct
8 Correct 4 ms 4992 KB Output is correct
9 Correct 3 ms 4992 KB Output is correct
10 Correct 3 ms 4992 KB Output is correct
11 Correct 4 ms 4992 KB Output is correct
12 Correct 3 ms 4992 KB Output is correct
13 Correct 3 ms 4992 KB Output is correct
14 Correct 3 ms 4992 KB Output is correct
15 Correct 3 ms 4992 KB Output is correct
16 Correct 3 ms 4992 KB Output is correct
17 Correct 4 ms 5248 KB Output is correct
18 Correct 4 ms 5248 KB Output is correct
19 Correct 4 ms 5248 KB Output is correct
20 Correct 3 ms 5120 KB Output is correct
21 Correct 3 ms 5120 KB Output is correct
22 Correct 4 ms 5120 KB Output is correct
23 Correct 4 ms 5248 KB Output is correct
24 Correct 4 ms 5248 KB Output is correct
25 Correct 5 ms 5120 KB Output is correct
26 Correct 4 ms 5120 KB Output is correct
27 Correct 3 ms 5120 KB Output is correct
28 Correct 3 ms 5248 KB Output is correct
29 Correct 6 ms 5248 KB Output is correct
30 Correct 3 ms 5120 KB Output is correct
31 Correct 3 ms 5248 KB Output is correct
32 Correct 3 ms 5120 KB Output is correct
33 Correct 151 ms 18776 KB Output is correct
34 Correct 90 ms 21600 KB Output is correct
35 Correct 133 ms 14432 KB Output is correct
36 Correct 338 ms 28728 KB Output is correct
37 Correct 32 ms 12912 KB Output is correct
38 Correct 319 ms 31436 KB Output is correct
39 Correct 287 ms 31480 KB Output is correct
40 Correct 294 ms 31436 KB Output is correct
41 Correct 293 ms 31696 KB Output is correct
42 Correct 310 ms 31748 KB Output is correct
43 Correct 320 ms 31436 KB Output is correct
44 Correct 305 ms 31308 KB Output is correct
45 Correct 338 ms 31368 KB Output is correct
46 Correct 286 ms 31436 KB Output is correct
47 Correct 290 ms 31392 KB Output is correct
48 Correct 101 ms 23776 KB Output is correct
49 Correct 127 ms 28220 KB Output is correct
50 Correct 32 ms 9848 KB Output is correct
51 Correct 46 ms 14444 KB Output is correct
52 Correct 22 ms 9720 KB Output is correct
53 Correct 162 ms 30688 KB Output is correct
54 Correct 90 ms 15904 KB Output is correct
55 Correct 213 ms 22996 KB Output is correct
56 Correct 127 ms 16976 KB Output is correct
57 Correct 199 ms 28512 KB Output is correct
58 Correct 37 ms 15460 KB Output is correct
59 Correct 47 ms 13160 KB Output is correct
60 Correct 111 ms 25432 KB Output is correct
61 Correct 121 ms 26328 KB Output is correct
62 Correct 79 ms 23392 KB Output is correct
63 Correct 62 ms 26136 KB Output is correct
64 Correct 71 ms 28212 KB Output is correct
65 Correct 113 ms 46688 KB Output is correct
66 Correct 59 ms 11256 KB Output is correct
67 Correct 89 ms 32560 KB Output is correct
68 Correct 158 ms 46592 KB Output is correct
69 Correct 29 ms 6784 KB Output is correct
70 Correct 10 ms 5248 KB Output is correct
71 Correct 59 ms 15072 KB Output is correct
72 Correct 100 ms 25056 KB Output is correct
73 Correct 171 ms 30324 KB Output is correct
74 Correct 211 ms 64684 KB Output is correct
75 Correct 153 ms 31476 KB Output is correct
76 Correct 156 ms 35764 KB Output is correct
77 Correct 204 ms 54292 KB Output is correct