Submission #253899

# Submission time Handle Problem Language Result Execution time Memory
253899 2020-07-29T05:18:32 Z IgorI Cats or Dogs (JOI18_catdog) C++17
100 / 100
361 ms 107304 KB
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int INF = 1e9;
const int N = 100002;

struct Table{
    ll a[2][2];
};

struct Sollution{
    vector<Table> tree;
    void build(int L, int R, int V)
    {
        if (L + 1 == R)
        {
            tree[V].a[0][0] = 0;
            tree[V].a[0][1] = INF;
            tree[V].a[1][0] = INF;
            tree[V].a[1][1] = 0;
            return;
        }
        tree[V].a[0][0] = 0;
        tree[V].a[1][0] = 1;
        tree[V].a[0][1] = 1;
        tree[V].a[1][1] = 0;
        int M = (L + R) / 2;
        build(L, M, 2 * V + 1);
        build(M, R, 2 * V + 2);
    }
    Sollution(int _n)
    {
        tree.resize(4 * _n);
        build(0, _n, 0);
    }
    void __Change(int pos, int cost0, int cost1, int L, int R, int V)
    {
        if (L + 1 == R)
        {
            tree[V].a[0][0] += cost0;
            tree[V].a[1][1] += cost1;
            return;
        }
        int M = (L + R) / 2;
        if (pos < M) __Change(pos, cost0, cost1, L, M, 2 * V + 1);
        else __Change(pos, cost0, cost1, M, R, 2 * V + 2);
        for (int le = 0; le < 2; le++)
        {
            for (int ri = 0; ri < 2; ri++)
            {
                tree[V].a[le][ri] = min(min(tree[2 * V + 1].a[le][0] + tree[2 * V + 2].a[0][ri],
                                            tree[2 * V + 1].a[le][1] + tree[2 * V + 2].a[1][ri]),
                                        min(tree[2 * V + 1].a[le][0] + tree[2 * V + 2].a[1][ri] + 1,
                                            tree[2 * V + 1].a[le][1] + tree[2 * V + 2].a[0][ri] + 1));
            }
        }
    }
    void Change(int pos, int cost0, int cost1)
    {
        __Change(pos, cost0, cost1, 0, tree.size() / 4, 0);
    }
    Table Cost()
    {
        return tree[0];
    }
};

ll n;
vector<int> graph[N];
ll x[N];
ll papa[N];
ll sz[N];

int main_child[N];
vector<int> other_child[N];
vector<vector<int> > route;
vector<Sollution> hld;
int route_pos[N];
int route_id[N];

void dfs1(int v, int p)
{
    papa[v] = p;
    sz[v] = 1;
    for (auto u : graph[v]) if (u != p)
    {
        dfs1(u, v);
        sz[v] += sz[u];
    }
}

void dfs2(int v, int p)
{
    int mxsz = 0, id = -1;
    for (auto u : graph[v]) if (u != p)
    {
        if (sz[u] > mxsz)
        {
            mxsz = sz[u];
            id = u;
        }
    }
    main_child[v] = id;
    for (auto u : graph[v]) if (u != p)
    {
        dfs2(u, v);
        if (u != id) other_child[v].push_back(u);
    }
}

ll answer()
{
    ll x = INF;
    Table T = hld[0].Cost();
    for (int i = 0; i < 2; i++)
    {
        for (int j = 0; j < 2; j++)
        {
            x = min(x, T.a[i][j]);
        }
    }
    return x;
}

void initialize(int n0, vector<int> a, vector<int> b)
{
    n = n0;
    for (int i = 0; i < n - 1; i++)
    {
        a[i]--, b[i]--;
        graph[a[i]].push_back(b[i]);
        graph[b[i]].push_back(a[i]);
    }
    for (int i = 0; i < n; i++)
    {
        x[i] = -1;
    }
    dfs1(0, 0);
    dfs2(0, 0);
    for (int i = 0; i < n; i++)
    {
        route_id[i] = -1;
        route_pos[i] = -1;
    }
    for (int i = 0; i < n; i++)
    {
        if (route_id[i] == -1)
        {
            vector<int> r;
            int x = i;
            while (x != -1)
            {
                r.push_back(x);
                x = main_child[x];
            }
            for (int j = 0; j < r.size(); j++)
            {
                route_id[r[j]] = route.size();
                route_pos[r[j]] = j;
            }
            route.push_back(r);
            hld.push_back(Sollution(r.size()));
        }
    }
}

void Change(int v, int cost0, int cost1)
{
    int x = route_id[v];
    int y = route_pos[v];
    Table oldT = hld[x].Cost();
    int oldminc0 = min(oldT.a[0][0], oldT.a[0][1]);
    int oldminc1 = min(oldT.a[1][0], oldT.a[1][1]);
    int oldd0 = min(oldminc0, oldminc1 + 1);
    int oldd1 = min(oldminc0 + 1, oldminc1);
    hld[x].Change(y, cost0, cost1);
    Table T = hld[x].Cost();
    int minc0 = min(T.a[0][0], T.a[0][1]);
    int minc1 = min(T.a[1][0], T.a[1][1]);
    int d0 = min(minc0, minc1 + 1);
    int d1 = min(minc0 + 1, minc1);
    v = route[x][0];
    if (v == 0) return;
    v = papa[v];
    Change(v, d0 - oldd0, d1 - oldd1);
}

int cat(int v)
{
    v--;
    x[v] = 0;
    Change(v, 0, INF);
    return answer();
}

int dog(int v)
{
    v--;
    x[v] = 1;
    Change(v, INF, 0);
    return answer();
}

int neighbor(int v)
{
    v--;
    if (x[v] == 0) Change(v, 0, -INF);
    if (x[v] == 1) Change(v, -INF, 0);
    x[v] = -1;
    return answer();
}

#ifdef LOCAL
int main()
{
    int n;
    cin >> n;
    vector<int> a(n - 1), b(n - 1);
    for (int i = 0; i < n - 1; i++)
    {
        cin >> a[i] >> b[i];
    }
    initialize(n, a, b);
    int q;
    cin >> q;
    while (q--)
    {
        int t, v;
        cin >> t >> v;
        if (t == 1) cout << cat(v) << endl;
        if (t == 2) cout << dog(v) << endl;
        if (t == 3) cout << neighbor(v) << endl;
    }
}
#endif // LOCAL

Compilation message

catdog.cpp: In function 'void initialize(int, std::vector<int>, std::vector<int>)':
catdog.cpp:159:31: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             for (int j = 0; j < r.size(); j++)
                             ~~^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 4 ms 4992 KB Output is correct
2 Correct 4 ms 4992 KB Output is correct
3 Correct 3 ms 4992 KB Output is correct
4 Correct 3 ms 4992 KB Output is correct
5 Correct 3 ms 4992 KB Output is correct
6 Correct 3 ms 4992 KB Output is correct
7 Correct 3 ms 4992 KB Output is correct
8 Correct 3 ms 4992 KB Output is correct
9 Correct 3 ms 4992 KB Output is correct
10 Correct 4 ms 4992 KB Output is correct
11 Correct 3 ms 4992 KB Output is correct
12 Correct 4 ms 4992 KB Output is correct
13 Correct 3 ms 4992 KB Output is correct
14 Correct 3 ms 4992 KB Output is correct
15 Correct 3 ms 4992 KB Output is correct
16 Correct 4 ms 4992 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 4992 KB Output is correct
2 Correct 4 ms 4992 KB Output is correct
3 Correct 3 ms 4992 KB Output is correct
4 Correct 3 ms 4992 KB Output is correct
5 Correct 3 ms 4992 KB Output is correct
6 Correct 3 ms 4992 KB Output is correct
7 Correct 3 ms 4992 KB Output is correct
8 Correct 3 ms 4992 KB Output is correct
9 Correct 3 ms 4992 KB Output is correct
10 Correct 4 ms 4992 KB Output is correct
11 Correct 3 ms 4992 KB Output is correct
12 Correct 4 ms 4992 KB Output is correct
13 Correct 3 ms 4992 KB Output is correct
14 Correct 3 ms 4992 KB Output is correct
15 Correct 3 ms 4992 KB Output is correct
16 Correct 4 ms 4992 KB Output is correct
17 Correct 5 ms 5248 KB Output is correct
18 Correct 4 ms 5376 KB Output is correct
19 Correct 4 ms 5248 KB Output is correct
20 Correct 3 ms 5120 KB Output is correct
21 Correct 3 ms 5120 KB Output is correct
22 Correct 3 ms 5120 KB Output is correct
23 Correct 5 ms 5504 KB Output is correct
24 Correct 4 ms 5248 KB Output is correct
25 Correct 4 ms 5120 KB Output is correct
26 Correct 4 ms 5248 KB Output is correct
27 Correct 3 ms 5248 KB Output is correct
28 Correct 4 ms 5376 KB Output is correct
29 Correct 6 ms 5248 KB Output is correct
30 Correct 3 ms 5120 KB Output is correct
31 Correct 4 ms 5248 KB Output is correct
32 Correct 3 ms 5120 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 4992 KB Output is correct
2 Correct 4 ms 4992 KB Output is correct
3 Correct 3 ms 4992 KB Output is correct
4 Correct 3 ms 4992 KB Output is correct
5 Correct 3 ms 4992 KB Output is correct
6 Correct 3 ms 4992 KB Output is correct
7 Correct 3 ms 4992 KB Output is correct
8 Correct 3 ms 4992 KB Output is correct
9 Correct 3 ms 4992 KB Output is correct
10 Correct 4 ms 4992 KB Output is correct
11 Correct 3 ms 4992 KB Output is correct
12 Correct 4 ms 4992 KB Output is correct
13 Correct 3 ms 4992 KB Output is correct
14 Correct 3 ms 4992 KB Output is correct
15 Correct 3 ms 4992 KB Output is correct
16 Correct 4 ms 4992 KB Output is correct
17 Correct 5 ms 5248 KB Output is correct
18 Correct 4 ms 5376 KB Output is correct
19 Correct 4 ms 5248 KB Output is correct
20 Correct 3 ms 5120 KB Output is correct
21 Correct 3 ms 5120 KB Output is correct
22 Correct 3 ms 5120 KB Output is correct
23 Correct 5 ms 5504 KB Output is correct
24 Correct 4 ms 5248 KB Output is correct
25 Correct 4 ms 5120 KB Output is correct
26 Correct 4 ms 5248 KB Output is correct
27 Correct 3 ms 5248 KB Output is correct
28 Correct 4 ms 5376 KB Output is correct
29 Correct 6 ms 5248 KB Output is correct
30 Correct 3 ms 5120 KB Output is correct
31 Correct 4 ms 5248 KB Output is correct
32 Correct 3 ms 5120 KB Output is correct
33 Correct 172 ms 24280 KB Output is correct
34 Correct 110 ms 28528 KB Output is correct
35 Correct 152 ms 17888 KB Output is correct
36 Correct 308 ms 38184 KB Output is correct
37 Correct 41 ms 16104 KB Output is correct
38 Correct 309 ms 42320 KB Output is correct
39 Correct 310 ms 42192 KB Output is correct
40 Correct 304 ms 42064 KB Output is correct
41 Correct 300 ms 42704 KB Output is correct
42 Correct 295 ms 42580 KB Output is correct
43 Correct 305 ms 42064 KB Output is correct
44 Correct 307 ms 42108 KB Output is correct
45 Correct 302 ms 42172 KB Output is correct
46 Correct 361 ms 42264 KB Output is correct
47 Correct 299 ms 42192 KB Output is correct
48 Correct 122 ms 28200 KB Output is correct
49 Correct 120 ms 33880 KB Output is correct
50 Correct 35 ms 10864 KB Output is correct
51 Correct 47 ms 16484 KB Output is correct
52 Correct 25 ms 10864 KB Output is correct
53 Correct 199 ms 41456 KB Output is correct
54 Correct 128 ms 20328 KB Output is correct
55 Correct 258 ms 30168 KB Output is correct
56 Correct 147 ms 21652 KB Output is correct
57 Correct 221 ms 38240 KB Output is correct
58 Correct 42 ms 18012 KB Output is correct
59 Correct 51 ms 15216 KB Output is correct
60 Correct 121 ms 30424 KB Output is correct
61 Correct 122 ms 31448 KB Output is correct
62 Correct 80 ms 27488 KB Output is correct
63 Correct 68 ms 38680 KB Output is correct
64 Correct 72 ms 40884 KB Output is correct
65 Correct 120 ms 71900 KB Output is correct
66 Correct 62 ms 13688 KB Output is correct
67 Correct 95 ms 48560 KB Output is correct
68 Correct 165 ms 71548 KB Output is correct
69 Correct 33 ms 7160 KB Output is correct
70 Correct 9 ms 5376 KB Output is correct
71 Correct 68 ms 18016 KB Output is correct
72 Correct 99 ms 31584 KB Output is correct
73 Correct 173 ms 36852 KB Output is correct
74 Correct 262 ms 107304 KB Output is correct
75 Correct 176 ms 39284 KB Output is correct
76 Correct 189 ms 49080 KB Output is correct
77 Correct 224 ms 86804 KB Output is correct