// this is O(n+m+q) instead of O(m+nq) like the model solution
// why?
#include <functional>
#include <cstdint>
#include <cassert>
#include <climits>
#include <vector>
#include <array>
using namespace std;
const size_t nil = SIZE_MAX;
void answer(int);
void count_routes(int _n, int _m, int _t, int E[][2], int _q, int K[])
{
const size_t n = _n, m = _m, target = _t, q = _q;
// get edges
vector<array<size_t, 2>> to(n, {nil, nil});
for(size_t i = 0; i < m; i++)
{
size_t u = E[i][0], v = E[i][1];
if(to[u][0] == nil)
to[u][0] = v;
else if(to[u][1] == nil)
to[u][1] = v;
if(to[v][0] == nil)
to[v][0] = u;
else if(to[v][1] == nil)
to[v][1] = u;
}
vector<size_t> F(2*n, nil);
// vertex i+n is vertex after coming through best edge of vertex i
auto nfix = [&](size_t v, size_t u) {
return v + (to[v][0] == u ? n : 0);
};
for(size_t u = 0; u < n; u++)
{
F[u] = nfix(to[u][0], u);
F[u+n] = nfix(to[u][1] == nil ? to[u][0] : to[u][1], u);
}
// rho computation
vector<bool> vis(2*n), on(2*n);
vector<size_t> st; st.reserve(2*n);
vector<size_t> top(2*n, nil);
vector<int> lambda(2*n), omega(2*n);
vector<vector<size_t>> G(2*n);
for(size_t s = 0; s < 2*n; s++)
{
G[F[s]].push_back(s);
// cout << s << " " << F[s] << endl;
if(vis[s])
continue;
assert(st.empty());
size_t u = s;
while(true)
{
vis[u] = on[u] = true;
st.push_back(u);
if(on[F[u]])
{
vector<size_t> cycle;
while(true)
{
auto v = st.back(); st.pop_back();
on[v] = false;
cycle.push_back(v);
if(v == F[u])
break;
}
for(auto v : cycle)
omega[v] = cycle.size(), top[v] = v;
}
else if(vis[F[u]])
{
lambda[u] = lambda[F[u]] + 1;
top[u] = top[F[u]];
}
else
{ u = F[u]; continue; }
break;
}
while(not st.empty())
{
auto v = st.back(); st.pop_back();
lambda[v] = lambda[F[v]] + 1;
top[v] = top[F[v]];
on[v] = false;
}
}
// queries
vector<pair<vector<int>, int>> tabs(2*n);
function<pair<vector<int>, int>(size_t)> get_tab = [&](size_t t) -> pair<vector<int>, int> {
if(not tabs[t].first.empty())
return tabs[t];
else if(lambda[t])
{
vector<int> cnt;
function<void(size_t, size_t)> dfs = [&](size_t u, size_t d) {
while(cnt.size() <= d) cnt.push_back(0);
cnt[d] += (u < n);
for(auto v : G[u])
dfs(v, d + 1);
};
dfs(t, 0);
return tabs[t] = {cnt, 0};
}
else
{
size_t u = t;
vector<int> cnt(omega[t]);
for(int i = 0; i < omega[t]; i++, u = F[u])
{
int sh = (i ? omega[t] - i : 0);
cnt[sh] += (u < n);
sh++;
for(auto v : G[u])
if(lambda[v])
{
auto [sub, _] = get_tab(v);
(void)_;
while(cnt.size() < sh + sub.size()) cnt.push_back(0);
for(size_t d = 0; d < sub.size(); d++)
cnt[sh + d] += sub[d];
}
}
for(size_t i = omega[t]; i < cnt.size(); i++)
cnt[i] += cnt[i - omega[t]];
return tabs[t] = {cnt, omega[t]};
}
};
auto count = [&](int k, size_t t) {
auto [T, mod] = get_tab(t);
if(mod)
{
if((size_t)k >= T.size())
k = (k - T.size()) % mod + T.size();
while((size_t)k >= T.size())
k -= mod;
return T[k];
}
else
return (size_t)k < T.size() ? T[k] : 0;
};
for(size_t que = 0; que < q; que++)
{
int k = K[que];
answer(count(k, target) + count(k, target + n));
}
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
640 KB |
Output is correct |
2 |
Correct |
1 ms |
512 KB |
Output is correct |
3 |
Correct |
1 ms |
640 KB |
Output is correct |
4 |
Correct |
0 ms |
384 KB |
Output is correct |
5 |
Correct |
1 ms |
256 KB |
Output is correct |
6 |
Correct |
1 ms |
768 KB |
Output is correct |
7 |
Correct |
0 ms |
384 KB |
Output is correct |
8 |
Correct |
1 ms |
512 KB |
Output is correct |
9 |
Correct |
3 ms |
640 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
640 KB |
Output is correct |
2 |
Correct |
1 ms |
512 KB |
Output is correct |
3 |
Correct |
1 ms |
640 KB |
Output is correct |
4 |
Correct |
0 ms |
384 KB |
Output is correct |
5 |
Correct |
1 ms |
256 KB |
Output is correct |
6 |
Correct |
1 ms |
768 KB |
Output is correct |
7 |
Correct |
0 ms |
384 KB |
Output is correct |
8 |
Correct |
1 ms |
512 KB |
Output is correct |
9 |
Correct |
3 ms |
640 KB |
Output is correct |
10 |
Correct |
0 ms |
384 KB |
Output is correct |
11 |
Correct |
12 ms |
5504 KB |
Output is correct |
12 |
Correct |
27 ms |
8832 KB |
Output is correct |
13 |
Correct |
46 ms |
25140 KB |
Output is correct |
14 |
Correct |
99 ms |
30072 KB |
Output is correct |
15 |
Correct |
125 ms |
30504 KB |
Output is correct |
16 |
Correct |
120 ms |
21496 KB |
Output is correct |
17 |
Correct |
97 ms |
17784 KB |
Output is correct |
18 |
Correct |
26 ms |
8832 KB |
Output is correct |
19 |
Correct |
123 ms |
30072 KB |
Output is correct |
20 |
Correct |
122 ms |
30456 KB |
Output is correct |
21 |
Correct |
91 ms |
21240 KB |
Output is correct |
22 |
Correct |
78 ms |
17916 KB |
Output is correct |
23 |
Correct |
104 ms |
33392 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
640 KB |
Output is correct |
2 |
Correct |
1 ms |
512 KB |
Output is correct |
3 |
Correct |
1 ms |
640 KB |
Output is correct |
4 |
Correct |
0 ms |
384 KB |
Output is correct |
5 |
Correct |
1 ms |
256 KB |
Output is correct |
6 |
Correct |
1 ms |
768 KB |
Output is correct |
7 |
Correct |
0 ms |
384 KB |
Output is correct |
8 |
Correct |
1 ms |
512 KB |
Output is correct |
9 |
Correct |
3 ms |
640 KB |
Output is correct |
10 |
Correct |
0 ms |
384 KB |
Output is correct |
11 |
Correct |
12 ms |
5504 KB |
Output is correct |
12 |
Correct |
27 ms |
8832 KB |
Output is correct |
13 |
Correct |
46 ms |
25140 KB |
Output is correct |
14 |
Correct |
99 ms |
30072 KB |
Output is correct |
15 |
Correct |
125 ms |
30504 KB |
Output is correct |
16 |
Correct |
120 ms |
21496 KB |
Output is correct |
17 |
Correct |
97 ms |
17784 KB |
Output is correct |
18 |
Correct |
26 ms |
8832 KB |
Output is correct |
19 |
Correct |
123 ms |
30072 KB |
Output is correct |
20 |
Correct |
122 ms |
30456 KB |
Output is correct |
21 |
Correct |
91 ms |
21240 KB |
Output is correct |
22 |
Correct |
78 ms |
17916 KB |
Output is correct |
23 |
Correct |
104 ms |
33392 KB |
Output is correct |
24 |
Correct |
1 ms |
384 KB |
Output is correct |
25 |
Correct |
13 ms |
5504 KB |
Output is correct |
26 |
Correct |
25 ms |
8824 KB |
Output is correct |
27 |
Correct |
236 ms |
25012 KB |
Output is correct |
28 |
Correct |
100 ms |
30072 KB |
Output is correct |
29 |
Correct |
126 ms |
30584 KB |
Output is correct |
30 |
Correct |
103 ms |
21500 KB |
Output is correct |
31 |
Correct |
90 ms |
17788 KB |
Output is correct |
32 |
Correct |
29 ms |
8832 KB |
Output is correct |
33 |
Correct |
112 ms |
30076 KB |
Output is correct |
34 |
Correct |
152 ms |
30456 KB |
Output is correct |
35 |
Correct |
90 ms |
21112 KB |
Output is correct |
36 |
Correct |
85 ms |
17912 KB |
Output is correct |
37 |
Correct |
124 ms |
33392 KB |
Output is correct |
38 |
Correct |
264 ms |
40448 KB |
Output is correct |