Submission #253074

# Submission time Handle Problem Language Result Execution time Memory
253074 2020-07-26T20:46:47 Z Kubin Tropical Garden (IOI11_garden) C++17
69 / 100
5000 ms 33400 KB
#include <functional>
#include <cstdint>
#include <cassert>
#include <vector>
#include <array>

#include <iostream>

using namespace std;

const size_t nil = SIZE_MAX;

void answer(int);

void count_routes(int _n, int _m, int _t, int E[][2], int _q, int K[])
{
    const size_t n = _n, m = _m, target = _t, q = _q;

    // get edges
    vector<array<size_t, 2>> to(n, {nil, nil});
    for(size_t i = 0; i < m; i++)
    {
        size_t u = E[i][0], v = E[i][1];
        if(to[u][0] == nil)
            to[u][0] = v;
        else if(to[u][1] == nil)
            to[u][1] = v;
        if(to[v][0] == nil)
            to[v][0] = u;
        else if(to[v][1] == nil)
            to[v][1] = u;
    }

    vector<size_t> F(2*n, nil);
    // vertex i+n is vertex after coming through best edge of vertex i
    auto nfix = [&](size_t v, size_t u) {
        return v + (to[v][0] == u ? n : 0);
    };
    for(size_t u = 0; u < n; u++)
    {
        F[u] = nfix(to[u][0], u);
        F[u+n] = nfix(to[u][1] == nil ? to[u][0] : to[u][1], u);
    }

    // rho computation
    vector<bool> vis(2*n), on(2*n);
    vector<size_t> st; st.reserve(2*n);

    vector<size_t> top(2*n, nil);
    vector<int> lambda(2*n), omega(2*n);

    vector<vector<size_t>> G(2*n);

    for(size_t s = 0; s < 2*n; s++)
    {
        G[F[s]].push_back(s);
        // cout << s << " " << F[s] << endl;
        if(vis[s])
            continue;

        assert(st.empty());
        size_t u = s;
        while(true)
        {
            vis[u] = on[u] = true;
            st.push_back(u);

            if(on[F[u]])
            {
                vector<size_t> cycle;
                while(true)
                {
                    auto v = st.back(); st.pop_back();
                    on[v] = false;
                    cycle.push_back(v);
                    if(v == F[u])
                        break;
                }
                for(auto v : cycle)
                    omega[v] = cycle.size(), top[v] = v;
            }
            else if(vis[F[u]])
            {
                lambda[u] = lambda[F[u]] + 1;
                top[u] = top[F[u]];
            }
            else
                { u = F[u]; continue; }
            break;
        }
        while(not st.empty())
        {
            auto v = st.back(); st.pop_back();
            lambda[v] = lambda[F[v]] + 1;
            top[v] = top[F[v]];
            on[v] = false;
        }
    }


    // queries

    vector<pair<vector<int>, int>> tabs(2*n);
    function<pair<vector<int>, int>(size_t)> get_tab = [&](size_t t) -> pair<vector<int>, int> {
        if(not tabs[t].first.empty())
            return tabs[t];
        else if(lambda[t])
        {
            vector<int> cnt;
            function<void(size_t, size_t)> dfs = [&](size_t u, size_t d) {
                while(cnt.size() <= d) cnt.push_back(0);
                cnt[d] += (u < n);
                for(auto v : G[u])
                    dfs(v, d + 1);
            };
            dfs(t, 0);
            return tabs[t] = {cnt, 0};
        }
        else
        {
            size_t u = t;
            vector<int> cnt(omega[t]);
            for(int i = 0; i < omega[t]; i++, u = F[u])
            {
                int sh = (i ? omega[t] - i : 0);
                cnt[sh] += (u < n);
                sh++;
                for(auto v : G[u])
                  if(lambda[v])
                {
                    auto [sub, _] = get_tab(v);
                    (void)_;
                    while(cnt.size() < sh + sub.size()) cnt.push_back(0);
                    for(size_t d = 0; d < sub.size(); d++)
                        cnt[sh + d] += sub[d];
                }
            }
            for(size_t i = omega[t]; i < cnt.size(); i++)
                cnt[i] += cnt[i - omega[t]];
            return tabs[t] = {cnt, omega[t]};
        }
    };

    auto count = [&](int k, size_t t) {
        auto [T, mod] = get_tab(t);
        if(mod)
        {
            while((size_t)k >= T.size())
                k -= mod;
            return T[k];
        }
        else
            return (size_t)k < T.size() ? T[k] : 0;
    };

    for(size_t que = 0; que < q; que++)
    {
        int k = K[que];
        answer(count(k, target) + count(k, target + n));
    }
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 640 KB Output is correct
2 Correct 1 ms 640 KB Output is correct
3 Correct 1 ms 640 KB Output is correct
4 Correct 0 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 1 ms 768 KB Output is correct
7 Correct 0 ms 384 KB Output is correct
8 Correct 1 ms 512 KB Output is correct
9 Correct 4 ms 512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 640 KB Output is correct
2 Correct 1 ms 640 KB Output is correct
3 Correct 1 ms 640 KB Output is correct
4 Correct 0 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 1 ms 768 KB Output is correct
7 Correct 0 ms 384 KB Output is correct
8 Correct 1 ms 512 KB Output is correct
9 Correct 4 ms 512 KB Output is correct
10 Correct 0 ms 384 KB Output is correct
11 Correct 12 ms 5504 KB Output is correct
12 Correct 28 ms 8952 KB Output is correct
13 Correct 48 ms 25012 KB Output is correct
14 Correct 140 ms 30072 KB Output is correct
15 Correct 159 ms 30456 KB Output is correct
16 Correct 100 ms 21496 KB Output is correct
17 Correct 111 ms 17840 KB Output is correct
18 Correct 26 ms 8832 KB Output is correct
19 Correct 149 ms 30200 KB Output is correct
20 Correct 161 ms 30456 KB Output is correct
21 Correct 100 ms 21240 KB Output is correct
22 Correct 118 ms 17912 KB Output is correct
23 Correct 109 ms 33400 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 640 KB Output is correct
2 Correct 1 ms 640 KB Output is correct
3 Correct 1 ms 640 KB Output is correct
4 Correct 0 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 1 ms 768 KB Output is correct
7 Correct 0 ms 384 KB Output is correct
8 Correct 1 ms 512 KB Output is correct
9 Correct 4 ms 512 KB Output is correct
10 Correct 0 ms 384 KB Output is correct
11 Correct 12 ms 5504 KB Output is correct
12 Correct 28 ms 8952 KB Output is correct
13 Correct 48 ms 25012 KB Output is correct
14 Correct 140 ms 30072 KB Output is correct
15 Correct 159 ms 30456 KB Output is correct
16 Correct 100 ms 21496 KB Output is correct
17 Correct 111 ms 17840 KB Output is correct
18 Correct 26 ms 8832 KB Output is correct
19 Correct 149 ms 30200 KB Output is correct
20 Correct 161 ms 30456 KB Output is correct
21 Correct 100 ms 21240 KB Output is correct
22 Correct 118 ms 17912 KB Output is correct
23 Correct 109 ms 33400 KB Output is correct
24 Correct 2 ms 384 KB Output is correct
25 Correct 14 ms 5632 KB Output is correct
26 Correct 40 ms 8952 KB Output is correct
27 Correct 255 ms 25116 KB Output is correct
28 Execution timed out 5057 ms 31832 KB Time limit exceeded
29 Halted 0 ms 0 KB -