Submission #250839

# Submission time Handle Problem Language Result Execution time Memory
250839 2020-07-19T09:24:23 Z atoiz Land of the Rainbow Gold (APIO17_rainbow) C++14
100 / 100
736 ms 73292 KB
#include "rainbow.h"
#include <iostream>
#include <vector>
#include <algorithm>
#include <cassert>
#include <set>

using namespace std;

template <typename T>
void normalize(vector<T> &vec)
{
	sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end());
}

int pos(vector<int> &vec, int x) { return int(upper_bound(vec.begin(), vec.end(), x) - vec.begin() - 1); }

struct SegmentTree2D
{
	int nx;
	vector<int> valx;
	vector<vector<int>> valy, it;

	void build(vector<pair<int, int>> vals)
	{
		valx.clear();
		for (auto p : vals) valx.push_back(p.first);
		normalize(valx);
		
		nx = (int) valx.size();
		valy.assign(nx * 2, vector<int>(0));
		it.resize(nx * 2);
		for (auto p : vals) {
			for (int i = pos(valx, p.first) + nx; i >= 1; i >>= 1) valy[i].push_back(p.second);
		}

		for (int i = nx * 2 - 1; i >= 1; --i) {
			normalize(valy[i]);
			int ny = (int) valy[i].size();
			it[i].assign(ny * 2, 0);
		}
	}

	void modify(int xx, int yy, int zz)
	{
		for (int x = pos(valx, xx) + nx; x >= 1; x >>= 1) {
			int ny = (int) valy[x].size();
			for (int y = pos(valy[x], yy) + ny; y >= 1; y >>= 1) {
				it[x][y] += zz;
			}
		}
	}

	int get1d(int x, int ly, int ry)
	{
		int ans = 0, ny = (int) valy[x].size();
		for (ly = pos(valy[x], ly - 1) + ny + 1, ry = pos(valy[x], ry) + ny + 1; ly < ry; ly >>= 1, ry >>= 1) {
			if (ly & 1) ans += it[x][ly++];
			if (ry & 1) ans += it[x][--ry];
		}
		return ans;
	}

	int get(int lx, int rx, int ly, int ry)
	{
		int ans = 0;
		for (lx = pos(valx, lx - 1) + nx + 1, rx = pos(valx, rx) + nx + 1; lx < rx; lx >>= 1, rx >>= 1) {
			if (lx & 1) ans += get1d(lx++, ly, ry);
			if (rx & 1) ans += get1d(--rx, ly, ry);
		}
		return ans;
	}
} st2d;

struct SegmentTree1D
{
	int n;
	vector<int> vals, it;

	void build()
	{
		normalize(vals);
		n = (int) vals.size();
		it.assign(n * 2, 0);
	}

	void modify(int i, int x)
	{
		for (i = pos(vals, i) + n; i >= 1; i >>= 1) {
			it[i] += x;
		}
	}

	int get(int l, int r)
	{
		int ans = 0;
		for (l = pos(vals, l - 1) + n + 1, r = pos(vals, r) + n + 1; l < r; l >>= 1, r >>= 1) {
			if (l & 1) ans += it[l++];
			if (r & 1) ans += it[--r];
		}
		return ans;
	}
};
vector<SegmentTree1D> rowst, colst;
int minr, maxr, minc, maxc;
set<pair<int, int>> vxset;

bool ck(int r, int c) { return vxset.find(make_pair(r, c)) == vxset.end(); }

void init(int R, int C, int sr, int sc, int M, char *S) 
{
	vector<pair<int, int>> vxvec(M + 1);
	vxvec[0] = make_pair(sr, sc);
	minr = maxr = sr, minc = maxc = sc;
	for (int i = 0; i < M; ++i) {
		// cerr << S[i];
		if (S[i] == 'N') --sr;
		else if (S[i] == 'S') ++sr;
		else if (S[i] == 'W') --sc;
		else ++sc;
		minr = min(minr, sr), maxr = max(maxr, sr);
		minc = min(minc, sc), maxc = max(maxc, sc);
		vxvec[i + 1] = make_pair(sr, sc);
	}
	// cerr << endl;
	normalize(vxvec);

	auto sqvec = vxvec;
	for (auto p : vxvec) {
		sqvec.emplace_back(p.first, p.second - 1);
		sqvec.emplace_back(p.first - 1, p.second);
		sqvec.emplace_back(p.first - 1, p.second - 1);
	}
	normalize(sqvec);
	st2d.build(sqvec);

	vxset = set<pair<int, int>>(vxvec.begin(), vxvec.end());
	for (auto p : sqvec) {
		bool b0 = (vxset.find(make_pair(p.first, p.second)) == vxset.end());
		bool b1 = (vxset.find(make_pair(p.first + 1, p.second)) == vxset.end());
		bool b2 = (vxset.find(make_pair(p.first, p.second + 1)) == vxset.end());
		bool b3 = (vxset.find(make_pair(p.first + 1, p.second + 1)) == vxset.end());
		int cnt = (int) b0 + b1 + b2 + b3;
		if (cnt == 3) st2d.modify(p.first, p.second, -1);
		else if (cnt == 1) st2d.modify(p.first, p.second, +1);
		else if (cnt == 2 && ((b0 && b3) || (b1 && b2))) st2d.modify(p.first, p.second, +2);
	}

	rowst.resize(R + 1), colst.resize(C + 1);
	for (auto p : vxvec) rowst[p.first].vals.push_back(p.second), colst[p.second].vals.push_back(p.first);
	for (auto p : vxvec) rowst[p.first].vals.push_back(p.second - 1), colst[p.second].vals.push_back(p.first - 1);
	for (int i = 1; i <= R; ++i) rowst[i].build();
	for (int i = 1; i <= C; ++i) colst[i].build();
	for (auto p : vxvec) {
		if (vxset.find(make_pair(p.first, p.second - 1)) == vxset.end()) rowst[p.first].modify(p.second - 1, 1);
		if (vxset.find(make_pair(p.first - 1, p.second)) == vxset.end()) colst[p.second].modify(p.first - 1, 1);
		if (vxset.find(make_pair(p.first, p.second + 1)) == vxset.end()) rowst[p.first].modify(p.second, 1);
		if (vxset.find(make_pair(p.first + 1, p.second)) == vxset.end()) colst[p.second].modify(p.first, 1);
	}
	// cout << "T " << colst[4].get(3, 3) << endl;
}

int colour(int ar, int ac, int br, int bc) 
{
	int ans = st2d.get(ar, br - 1, ac, bc - 1);
	// cout << "S " << ans << endl;
	ans += rowst[ar].get(ac, bc - 1);
	// cout << "S " << ans << endl;
	ans += rowst[br].get(ac, bc - 1);
	// cout << "S " << ans << endl;
	ans += colst[ac].get(ar, br - 1);
	// cout << "S " << ans << endl;
	ans += colst[bc].get(ar, br - 1);
	// cout << "S " << ans << endl;
	ans += ck(ar, ac) + ck(ar, bc) + ck(br, ac) + ck(br, bc);
	// cout << "S " << ans << endl;
	assert(ans % 4 == 0);
	ans /= 4;
	if (ar < minr && maxr < br && ac < minc && maxc < bc) ++ans;
	return ans;
}

# Verdict Execution time Memory Grader output
1 Correct 2 ms 384 KB Output is correct
2 Correct 4 ms 512 KB Output is correct
3 Correct 3 ms 384 KB Output is correct
4 Correct 2 ms 384 KB Output is correct
5 Correct 4 ms 640 KB Output is correct
6 Correct 0 ms 256 KB Output is correct
7 Correct 0 ms 256 KB Output is correct
8 Correct 0 ms 256 KB Output is correct
9 Correct 0 ms 256 KB Output is correct
10 Correct 0 ms 256 KB Output is correct
11 Correct 3 ms 384 KB Output is correct
12 Correct 4 ms 512 KB Output is correct
13 Correct 5 ms 640 KB Output is correct
14 Correct 6 ms 768 KB Output is correct
15 Correct 0 ms 256 KB Output is correct
16 Correct 0 ms 256 KB Output is correct
17 Correct 0 ms 256 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 256 KB Output is correct
2 Correct 0 ms 256 KB Output is correct
3 Correct 312 ms 24992 KB Output is correct
4 Correct 465 ms 33868 KB Output is correct
5 Correct 469 ms 33112 KB Output is correct
6 Correct 382 ms 27456 KB Output is correct
7 Correct 436 ms 26924 KB Output is correct
8 Correct 94 ms 12160 KB Output is correct
9 Correct 470 ms 33868 KB Output is correct
10 Correct 510 ms 33112 KB Output is correct
11 Correct 439 ms 27456 KB Output is correct
12 Correct 307 ms 32500 KB Output is correct
13 Correct 309 ms 33868 KB Output is correct
14 Correct 317 ms 33180 KB Output is correct
15 Correct 285 ms 27456 KB Output is correct
16 Correct 355 ms 27272 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 256 KB Output is correct
2 Correct 226 ms 43596 KB Output is correct
3 Correct 351 ms 73112 KB Output is correct
4 Correct 525 ms 67368 KB Output is correct
5 Correct 277 ms 58648 KB Output is correct
6 Correct 77 ms 28460 KB Output is correct
7 Correct 136 ms 33376 KB Output is correct
8 Correct 207 ms 22584 KB Output is correct
9 Correct 190 ms 20128 KB Output is correct
10 Correct 54 ms 10940 KB Output is correct
11 Correct 136 ms 22148 KB Output is correct
12 Correct 222 ms 43724 KB Output is correct
13 Correct 334 ms 73164 KB Output is correct
14 Correct 535 ms 67528 KB Output is correct
15 Correct 272 ms 58520 KB Output is correct
16 Correct 66 ms 27288 KB Output is correct
17 Correct 138 ms 33764 KB Output is correct
18 Correct 263 ms 48200 KB Output is correct
19 Correct 408 ms 70732 KB Output is correct
20 Correct 399 ms 70604 KB Output is correct
21 Correct 193 ms 22440 KB Output is correct
22 Correct 186 ms 20128 KB Output is correct
23 Correct 55 ms 10940 KB Output is correct
24 Correct 141 ms 22136 KB Output is correct
25 Correct 221 ms 43724 KB Output is correct
26 Correct 337 ms 73236 KB Output is correct
27 Correct 534 ms 67656 KB Output is correct
28 Correct 271 ms 58648 KB Output is correct
29 Correct 67 ms 27288 KB Output is correct
30 Correct 139 ms 33760 KB Output is correct
31 Correct 264 ms 48204 KB Output is correct
32 Correct 399 ms 70892 KB Output is correct
33 Correct 417 ms 70616 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 384 KB Output is correct
2 Correct 4 ms 512 KB Output is correct
3 Correct 3 ms 384 KB Output is correct
4 Correct 2 ms 384 KB Output is correct
5 Correct 4 ms 640 KB Output is correct
6 Correct 0 ms 256 KB Output is correct
7 Correct 0 ms 256 KB Output is correct
8 Correct 0 ms 256 KB Output is correct
9 Correct 0 ms 256 KB Output is correct
10 Correct 0 ms 256 KB Output is correct
11 Correct 3 ms 384 KB Output is correct
12 Correct 4 ms 512 KB Output is correct
13 Correct 5 ms 640 KB Output is correct
14 Correct 6 ms 768 KB Output is correct
15 Correct 0 ms 256 KB Output is correct
16 Correct 0 ms 256 KB Output is correct
17 Correct 0 ms 256 KB Output is correct
18 Correct 636 ms 14924 KB Output is correct
19 Correct 134 ms 1784 KB Output is correct
20 Correct 117 ms 1144 KB Output is correct
21 Correct 123 ms 1272 KB Output is correct
22 Correct 129 ms 1400 KB Output is correct
23 Correct 124 ms 1656 KB Output is correct
24 Correct 153 ms 1272 KB Output is correct
25 Correct 150 ms 4220 KB Output is correct
26 Correct 141 ms 4344 KB Output is correct
27 Correct 314 ms 13484 KB Output is correct
28 Correct 263 ms 8736 KB Output is correct
29 Correct 312 ms 12448 KB Output is correct
30 Correct 573 ms 26380 KB Output is correct
31 Correct 4 ms 384 KB Output is correct
32 Correct 551 ms 13852 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 384 KB Output is correct
2 Correct 4 ms 512 KB Output is correct
3 Correct 3 ms 384 KB Output is correct
4 Correct 2 ms 384 KB Output is correct
5 Correct 4 ms 640 KB Output is correct
6 Correct 0 ms 256 KB Output is correct
7 Correct 0 ms 256 KB Output is correct
8 Correct 0 ms 256 KB Output is correct
9 Correct 0 ms 256 KB Output is correct
10 Correct 0 ms 256 KB Output is correct
11 Correct 3 ms 384 KB Output is correct
12 Correct 4 ms 512 KB Output is correct
13 Correct 5 ms 640 KB Output is correct
14 Correct 6 ms 768 KB Output is correct
15 Correct 0 ms 256 KB Output is correct
16 Correct 0 ms 256 KB Output is correct
17 Correct 0 ms 256 KB Output is correct
18 Correct 636 ms 14924 KB Output is correct
19 Correct 134 ms 1784 KB Output is correct
20 Correct 117 ms 1144 KB Output is correct
21 Correct 123 ms 1272 KB Output is correct
22 Correct 129 ms 1400 KB Output is correct
23 Correct 124 ms 1656 KB Output is correct
24 Correct 153 ms 1272 KB Output is correct
25 Correct 150 ms 4220 KB Output is correct
26 Correct 141 ms 4344 KB Output is correct
27 Correct 314 ms 13484 KB Output is correct
28 Correct 263 ms 8736 KB Output is correct
29 Correct 312 ms 12448 KB Output is correct
30 Correct 573 ms 26380 KB Output is correct
31 Correct 4 ms 384 KB Output is correct
32 Correct 551 ms 13852 KB Output is correct
33 Correct 226 ms 43596 KB Output is correct
34 Correct 351 ms 73112 KB Output is correct
35 Correct 525 ms 67368 KB Output is correct
36 Correct 277 ms 58648 KB Output is correct
37 Correct 77 ms 28460 KB Output is correct
38 Correct 136 ms 33376 KB Output is correct
39 Correct 207 ms 22584 KB Output is correct
40 Correct 190 ms 20128 KB Output is correct
41 Correct 54 ms 10940 KB Output is correct
42 Correct 136 ms 22148 KB Output is correct
43 Correct 222 ms 43724 KB Output is correct
44 Correct 334 ms 73164 KB Output is correct
45 Correct 535 ms 67528 KB Output is correct
46 Correct 272 ms 58520 KB Output is correct
47 Correct 66 ms 27288 KB Output is correct
48 Correct 138 ms 33764 KB Output is correct
49 Correct 263 ms 48200 KB Output is correct
50 Correct 408 ms 70732 KB Output is correct
51 Correct 399 ms 70604 KB Output is correct
52 Correct 193 ms 22440 KB Output is correct
53 Correct 186 ms 20128 KB Output is correct
54 Correct 55 ms 10940 KB Output is correct
55 Correct 141 ms 22136 KB Output is correct
56 Correct 221 ms 43724 KB Output is correct
57 Correct 337 ms 73236 KB Output is correct
58 Correct 534 ms 67656 KB Output is correct
59 Correct 271 ms 58648 KB Output is correct
60 Correct 67 ms 27288 KB Output is correct
61 Correct 139 ms 33760 KB Output is correct
62 Correct 264 ms 48204 KB Output is correct
63 Correct 399 ms 70892 KB Output is correct
64 Correct 417 ms 70616 KB Output is correct
65 Correct 561 ms 22584 KB Output is correct
66 Correct 583 ms 20612 KB Output is correct
67 Correct 284 ms 13384 KB Output is correct
68 Correct 383 ms 23280 KB Output is correct
69 Correct 355 ms 43852 KB Output is correct
70 Correct 586 ms 73292 KB Output is correct
71 Correct 736 ms 67788 KB Output is correct
72 Correct 457 ms 59068 KB Output is correct
73 Correct 186 ms 29448 KB Output is correct
74 Correct 265 ms 34992 KB Output is correct
75 Correct 394 ms 48344 KB Output is correct
76 Correct 608 ms 70860 KB Output is correct
77 Correct 621 ms 70604 KB Output is correct
78 Correct 312 ms 24992 KB Output is correct
79 Correct 465 ms 33868 KB Output is correct
80 Correct 469 ms 33112 KB Output is correct
81 Correct 382 ms 27456 KB Output is correct
82 Correct 436 ms 26924 KB Output is correct
83 Correct 94 ms 12160 KB Output is correct
84 Correct 470 ms 33868 KB Output is correct
85 Correct 510 ms 33112 KB Output is correct
86 Correct 439 ms 27456 KB Output is correct
87 Correct 307 ms 32500 KB Output is correct
88 Correct 309 ms 33868 KB Output is correct
89 Correct 317 ms 33180 KB Output is correct
90 Correct 285 ms 27456 KB Output is correct
91 Correct 355 ms 27272 KB Output is correct