Submission #250323

# Submission time Handle Problem Language Result Execution time Memory
250323 2020-07-17T11:52:22 Z mode149256 Pinball (JOI14_pinball) C++14
100 / 100
925 ms 76356 KB
/*input
5 6
2 4 3 5
1 2 2 8
3 6 5 2
4 6 4 7
2 4 3 10

3 5
2 4 3 10
1 3 1 20
2 5 4 30
*/
#include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
using namespace std;

namespace my_template {
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll, ll> pl;
typedef pair<ld, ld> pd;

typedef vector<int> vi;
typedef vector<vi> vii;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<vl> vll;
typedef vector<pi> vpi;
typedef vector<vpi> vpii;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
typedef vector<pd> vpd;
typedef vector<bool> vb;
typedef vector<vb> vbb;
typedef std::string str;
typedef std::vector<str> vs;

#define x first
#define y second
#define debug(...) cout<<"["<<#__VA_ARGS__<<": "<<__VA_ARGS__<<"]\n"

const ld PI = 3.14159265358979323846264338327950288419716939937510582097494L;

template<typename T>
pair<T, T> operator+(const pair<T, T> &a, const pair<T, T> &b) { return pair<T, T>(a.x + b.x, a.y + b.y); }
template<typename T>
pair<T, T> operator-(const pair<T, T> &a, const pair<T, T> &b) { return pair<T, T>(a.x - b.x, a.y - b.y); }
template<typename T>
T operator*(const pair<T, T> &a, const pair<T, T> &b) { return (a.x * b.x + a.y * b.y); }
template<typename T>
T operator^(const pair<T, T> &a, const pair<T, T> &b) { return (a.x * b.y - a.y * b.x); }

template<typename T>
void print(vector<T> vec, string name = "") {
	cout << name;
	for (auto u : vec)
		cout << u << ' ';
	cout << '\n';
}
}
using namespace my_template;

const int MOD = 1000000007;
const ll INF = 1e15;
const int MX = 100101;

struct tral {
	int a, b, c, d;
};

struct node {
	int l, r;
	ll maz;
	node *left = nullptr;
	node *right = nullptr;
	node(int a, int b) : l(a), r(b), maz(INF) {
		if (l != r) {
			left = new node(l, (l + r) / 2);
			right = new node((l + r) / 2 + 1, r);
		}
	}

	void upd(int pos, ll val) {
		if (l == r) {
			maz = min(maz, val);
			return;
		}
		if (pos <= (l + r) / 2) {
			left->upd(pos, val);
		}
		else {
			right->upd(pos, val);
		}

		maz = min(left->maz, right->maz);
	}

	ll get(int a, int b) {
		// printf("a = %d, b = %d, l = %d, r = %d\n", a, b, l, r);
		if (r < a or b < l) return INF;
		else if (a <= l and r <= b) return maz;
		else {
			return min(left->get(a, b), right->get(a, b));
		}
	}
};

int K;
unordered_map<int, int> kas;

int main() {
	ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	int M, N;
	cin >> M >> N;
	vi pts = {1, N};
	vector<tral> sk(M);
	for (int i = 0; i < M; ++i)
	{
		int a, b, c, d; cin >> a >> b >> c >> d;
		sk[i] = {a, b, c, d};
		pts.emplace_back(a);
		pts.emplace_back(b);
		pts.emplace_back(c);
	}

	sort(pts.begin(), pts.end());
	pts.erase(unique(pts.begin(), pts.end()), pts.end());
	K = (int)pts.size();
	for (int i = 0; i < K; ++i)
	{
		kas[pts[i]] = i;
	}

	ll ats = INF;
	node Left(0, K);
	node Right(0, K);
	Left.upd(kas[1], 0);
	Right.upd(kas[N], 0);

	for (int i = 0; i < M; ++i)
	{
		ll l = Left.get(kas[sk[i].a], kas[sk[i].b]);
		ll r = Right.get(kas[sk[i].a], kas[sk[i].b]);

		ats = min(ats, l + r + sk[i].d);
		Left.upd(kas[sk[i].c], sk[i].d + l);
		Right.upd(kas[sk[i].c], sk[i].d + r);
	}

	if (ats >= INF) printf("-1\n");
	else printf("%lld\n", ats);
}

/* Look for:
* special cases (n=1?)
* overflow (ll vs int?)
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* array bounds
*/
# Verdict Execution time Memory Grader output
1 Correct 0 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 0 ms 384 KB Output is correct
4 Correct 0 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 0 ms 384 KB Output is correct
7 Correct 0 ms 384 KB Output is correct
8 Correct 0 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 0 ms 384 KB Output is correct
4 Correct 0 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 0 ms 384 KB Output is correct
7 Correct 0 ms 384 KB Output is correct
8 Correct 0 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 1 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 512 KB Output is correct
13 Correct 1 ms 512 KB Output is correct
14 Correct 1 ms 512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 0 ms 384 KB Output is correct
4 Correct 0 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 0 ms 384 KB Output is correct
7 Correct 0 ms 384 KB Output is correct
8 Correct 0 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 1 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 512 KB Output is correct
13 Correct 1 ms 512 KB Output is correct
14 Correct 1 ms 512 KB Output is correct
15 Correct 0 ms 384 KB Output is correct
16 Correct 1 ms 512 KB Output is correct
17 Correct 4 ms 640 KB Output is correct
18 Correct 2 ms 384 KB Output is correct
19 Correct 3 ms 1024 KB Output is correct
20 Correct 2 ms 640 KB Output is correct
21 Correct 2 ms 640 KB Output is correct
22 Correct 4 ms 1024 KB Output is correct
23 Correct 2 ms 1024 KB Output is correct
24 Correct 4 ms 1024 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 384 KB Output is correct
2 Correct 1 ms 384 KB Output is correct
3 Correct 0 ms 384 KB Output is correct
4 Correct 0 ms 384 KB Output is correct
5 Correct 0 ms 384 KB Output is correct
6 Correct 0 ms 384 KB Output is correct
7 Correct 0 ms 384 KB Output is correct
8 Correct 0 ms 384 KB Output is correct
9 Correct 1 ms 384 KB Output is correct
10 Correct 1 ms 384 KB Output is correct
11 Correct 1 ms 384 KB Output is correct
12 Correct 1 ms 512 KB Output is correct
13 Correct 1 ms 512 KB Output is correct
14 Correct 1 ms 512 KB Output is correct
15 Correct 0 ms 384 KB Output is correct
16 Correct 1 ms 512 KB Output is correct
17 Correct 4 ms 640 KB Output is correct
18 Correct 2 ms 384 KB Output is correct
19 Correct 3 ms 1024 KB Output is correct
20 Correct 2 ms 640 KB Output is correct
21 Correct 2 ms 640 KB Output is correct
22 Correct 4 ms 1024 KB Output is correct
23 Correct 2 ms 1024 KB Output is correct
24 Correct 4 ms 1024 KB Output is correct
25 Correct 28 ms 4608 KB Output is correct
26 Correct 120 ms 14936 KB Output is correct
27 Correct 381 ms 28048 KB Output is correct
28 Correct 162 ms 7664 KB Output is correct
29 Correct 318 ms 24568 KB Output is correct
30 Correct 242 ms 11136 KB Output is correct
31 Correct 583 ms 45420 KB Output is correct
32 Correct 597 ms 35052 KB Output is correct
33 Correct 60 ms 15240 KB Output is correct
34 Correct 302 ms 38308 KB Output is correct
35 Correct 396 ms 76092 KB Output is correct
36 Correct 925 ms 76220 KB Output is correct
37 Correct 549 ms 76168 KB Output is correct
38 Correct 544 ms 76356 KB Output is correct