Submission #247930

# Submission time Handle Problem Language Result Execution time Memory
247930 2020-07-12T06:42:23 Z Plasmatic Robots (APIO13_robots) C++11
100 / 100
639 ms 104436 KB
// apio-13-p1-robots.yml
#include "bits/stdc++.h"
using namespace std;

// Defines
#define pb push_back
#define mpr make_pair
#define mtp make_tuple
#define all(x) (x).begin(), (x).end()
// Basic type definitions
using ll = long long; using ull = unsigned long long; using ld = long double;
using pii = pair<int, int>; using pll = pair<long long, long long>;
// PBDS order statistic tree
#include <ext/pb_ds/assoc_container.hpp> // Common file 
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds; 
template <typename T, class comp = less<T>> using os_tree = tree<T, null_type, comp, rb_tree_tag, tree_order_statistics_node_update>;
template <typename K, typename V, class comp = less<K>> using treemap = tree<K, V, comp, rb_tree_tag, tree_order_statistics_node_update>;
// HashSet
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
const ll RANDOM = chrono::high_resolution_clock::now().time_since_epoch().count();
struct chash { ll operator()(ll x) const { return x ^ RANDOM; } };
template <typename T, class Hash> using hashset = gp_hash_table<T, null_type, Hash>;
template <typename K, typename V, class Hash> using hashmap = gp_hash_table<K, V, Hash>;
// More utilities
template <typename C> int SZ(C &v) { return v.size(); }
template <typename T, typename U> void maxa(T &a, U b) { a = max(a, b); }
template <typename T, typename U> void mina(T &a, U b) { a = min(a, b); }
const ll INF = 0x3f3f3f3f, LLINF = 0x3f3f3f3f3f3f3f3f;

int mk(int a, int b) {
    return (a << 10) | b;
}
int fst(int p) { return p >> 10; }
int snd(int p) { return p & 1023; }

const int MN = 501, DIR[4][2] = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
const int DEF_PII = mk(INF, INF), DEF_INVALID = mk(-1, -1);
int N, W, H;
char grid[MN][MN];

int toPos[MN][MN][4];
bool instk[MN][MN];
stack<int> stk;
int compute(int x, int y, int dir) {
    auto &res = toPos[x][y][dir];
    if (res != DEF_PII) return res;
    if (grid[x][y] == 'x') return res = mk(-1, -1);

    stk.push(mk(x, y));
    instk[x][y] = true;

    int nx = x + DIR[dir][0], ny = y + DIR[dir][1];
    if (nx >= 0 && nx < H && ny >= 0 && ny < W) {
        if (instk[nx][ny]) res = mk(-1, -1);
        else if (grid[nx][ny] == 'x') res = mk(x, y);
        else if (grid[nx][ny] == 'A') res = compute(nx, ny, (dir + 3) % 4);
        else if (grid[nx][ny] == 'C') res = compute(nx, ny, (dir + 1) % 4);
        else res = compute(nx, ny, dir);
    }
    else res = mk(x, y);

    stk.pop();
    instk[x][y] = false;

    return res;
}

int spos[10];
int dp[10][10][MN][MN];

// BFS
queue<int> q;
vector<pii> ins;

// mode=0->init bfs (a is startnum), mode=1->bfs from level (a..b, b+1..c is level)
void bfs(int dis[MN][MN], int mode, int a, int b, int c) {
    if (mode == 0) {
        ins.emplace_back(0, spos[a]); }
    else {
        for (auto i = 0; i < H; i++) {
            for (auto j = 0; j < W; j++) {
                int alt = dp[a][b][i][j] + dp[b + 1][c][i][j];
                if (alt < dis[i][j])
                    ins.emplace_back(alt, mk(i, j));
            }
        }
    }
    sort(all(ins), greater<pii>());

#define D dis
#define PUSH_POS auto &ipos = ins.back().second; \
        if (D[fst(ipos)][snd(ipos)] > ins.back().first) { \
            D[fst(ipos)][snd(ipos)] = ins.back().first; \
            q.push(ipos); \
        } \
        ins.pop_back();

    while (!ins.empty()) {
        PUSH_POS;

        while (!q.empty()) {
            auto c = q.front(); q.pop();
            int cdis = D[fst(c)][snd(c)];
            while (!ins.empty() && ins.back().first < cdis + 1) {
                PUSH_POS;
            }
            for (auto to : toPos[fst(c)][snd(c)]) {
                if (to == DEF_INVALID) continue;
                if (D[fst(to)][snd(to)] > cdis + 1) {
                    D[fst(to)][snd(to)] = cdis + 1;
                    q.push(to);
                }
            }
        }
    }

#undef D
}

int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);

    cin >> (N) >> (W) >> (H);
    for (auto i = 0; i < H; i++) {
        cin >> (grid[i]);
        for (auto j = 0; j < W; j++) {
            if ('1' <= grid[i][j] && grid[i][j] <= '9') {
                spos[grid[i][j] - '0'] = mk(i, j); }
        }
    }

    // Compute
    for (auto i = 0; i < H; i++)
        for (auto j = 0; j < W; j++)
            for (auto k = 0; k < 4; k++)
                toPos[i][j][k] = mk(INF, INF);
    for (auto i = 0; i < H; i++)
        for (auto j = 0; j < W; j++)
            for (auto k = 0; k < 4; k++)
                compute(i, j, k);

    memset(dp, 0x3f, sizeof dp);
    for (int len = 1; len <= N; len++) {
        int end = N - len + 1;
        for (auto l = 1; l <= end; l++) {
            int r = l + len - 1;
            if (l == r) {
                bfs(dp[l][r], 0, l, -1, -1); }
            else {
                for (auto k = l; k < r; k++) {
                    bfs(dp[l][r], 1, l, k, r); }
            }

            // for (auto i = 0; i < H; i++) {
            //     for (auto j = 0; j < W; j++) {
            //         cout<<"l="<<(l)<<", "; cout<<"r="<<(r)<<", "; cout<<"i="<<(i)<<", "; cout<<"j="<<(j)<<", "; cout<<"dp[l][r][i][j]="<<(dp[l][r][i][j])<<", "; cout << endl; // db l,r,i,j,dp[l][r][i][j]
            //     }
            // }
        }
    }

    int ans = INF;
    for (auto i = 0; i < H; i++)
        for (auto j = 0; j < W; j++)
            mina(ans, dp[1][N][i][j]);
    cout << ((ans == INF ? -1 : ans)) << '\n';

    return 0;
}

# Verdict Execution time Memory Grader output
1 Correct 60 ms 98552 KB Output is correct
2 Correct 45 ms 98552 KB Output is correct
3 Correct 45 ms 98552 KB Output is correct
4 Correct 45 ms 98680 KB Output is correct
5 Correct 45 ms 98688 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 60 ms 98552 KB Output is correct
2 Correct 45 ms 98552 KB Output is correct
3 Correct 45 ms 98552 KB Output is correct
4 Correct 45 ms 98680 KB Output is correct
5 Correct 45 ms 98688 KB Output is correct
6 Correct 45 ms 98552 KB Output is correct
7 Correct 45 ms 98552 KB Output is correct
8 Correct 45 ms 98552 KB Output is correct
9 Correct 53 ms 98552 KB Output is correct
10 Correct 45 ms 98680 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 60 ms 98552 KB Output is correct
2 Correct 45 ms 98552 KB Output is correct
3 Correct 45 ms 98552 KB Output is correct
4 Correct 45 ms 98680 KB Output is correct
5 Correct 45 ms 98688 KB Output is correct
6 Correct 45 ms 98552 KB Output is correct
7 Correct 45 ms 98552 KB Output is correct
8 Correct 45 ms 98552 KB Output is correct
9 Correct 53 ms 98552 KB Output is correct
10 Correct 45 ms 98680 KB Output is correct
11 Correct 108 ms 101624 KB Output is correct
12 Correct 51 ms 101240 KB Output is correct
13 Correct 58 ms 101240 KB Output is correct
14 Correct 231 ms 101880 KB Output is correct
15 Correct 79 ms 101496 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 60 ms 98552 KB Output is correct
2 Correct 45 ms 98552 KB Output is correct
3 Correct 45 ms 98552 KB Output is correct
4 Correct 45 ms 98680 KB Output is correct
5 Correct 45 ms 98688 KB Output is correct
6 Correct 45 ms 98552 KB Output is correct
7 Correct 45 ms 98552 KB Output is correct
8 Correct 45 ms 98552 KB Output is correct
9 Correct 53 ms 98552 KB Output is correct
10 Correct 45 ms 98680 KB Output is correct
11 Correct 108 ms 101624 KB Output is correct
12 Correct 51 ms 101240 KB Output is correct
13 Correct 58 ms 101240 KB Output is correct
14 Correct 231 ms 101880 KB Output is correct
15 Correct 79 ms 101496 KB Output is correct
16 Correct 96 ms 103032 KB Output is correct
17 Correct 639 ms 104436 KB Output is correct
18 Correct 130 ms 103928 KB Output is correct
19 Correct 88 ms 103288 KB Output is correct
20 Correct 380 ms 104436 KB Output is correct