Submission #245506

# Submission time Handle Problem Language Result Execution time Memory
245506 2020-07-06T14:33:50 Z rp_o_02 Awesome Arrowland Adventure (eJOI19_adventure) C++14
100 / 100
340 ms 78200 KB
// eJOI19_adventure.cpp : This file contains the 'main' function. Program execution begins and ends there.
//

#include <iostream>
#include <stdio.h> 
#include <stdlib.h> 
#include <limits.h> 

using namespace std;
typedef long long ll;

// A structure to represent a node in adjacency list 
struct AdjListNode
{
    int dest;
    int weight;
    struct AdjListNode* next;
};

// A structure to represent an adjacency list 
struct AdjList
{
    struct AdjListNode* head;  // pointer to head node of list 
};

// A structure to represent a graph. A graph is an array of adjacency lists. 
// Size of array will be V (number of vertices in graph) 
struct Graph
{
    int V;
    struct AdjList* array;
};

// A utility function to create a new adjacency list node 
struct AdjListNode* newAdjListNode(int dest, int weight)
{
    struct AdjListNode* newNode =
        (struct AdjListNode*)malloc(sizeof(struct AdjListNode));
    newNode->dest = dest;
    newNode->weight = weight;
    newNode->next = NULL;
    return newNode;
}

// A utility function that creates a graph of V vertices 
struct Graph* createGraph(int V)
{
    struct Graph* graph = (struct Graph*)malloc(sizeof(struct Graph));
    graph->V = V;

    // Create an array of adjacency lists.  Size of array will be V 
    graph->array = (struct AdjList*)malloc(V * sizeof(struct AdjList));

    // Initialize each adjacency list as empty by making head as NULL 
    for (int i = 0; i < V; ++i)
        graph->array[i].head = NULL;

    return graph;
}

// Adds an edge to an undirected graph 
void addEdge(struct Graph* graph, int src, int dest, int weight)
{
    // Add an edge from src to dest.  A new node is added to the adjacency 
    // list of src.  The node is added at the beginning 
    struct AdjListNode* newNode = newAdjListNode(dest, weight);
    newNode->next = graph->array[src].head;
    graph->array[src].head = newNode;

    // Since graph is undirected, add an edge from dest to src also 
    newNode = newAdjListNode(src, 1e6);
    newNode->next = graph->array[dest].head;
    graph->array[dest].head = newNode;
}

// Structure to represent a min heap node 
struct MinHeapNode
{
    int  v;
    ll dist;
};

// Structure to represent a min heap 
struct MinHeap
{
    int size;      // Number of heap nodes present currently 
    int capacity;  // Capacity of min heap 
    int* pos;     // This is needed for decreaseKey() 
    struct MinHeapNode** array;
};

// A utility function to create a new Min Heap Node 
struct MinHeapNode* newMinHeapNode(int v, int dist)
{
    struct MinHeapNode* minHeapNode =
        (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode));
    minHeapNode->v = v;
    minHeapNode->dist = dist;
    return minHeapNode;
}

// A utility function to create a Min Heap 
struct MinHeap* createMinHeap(int capacity)
{
    struct MinHeap* minHeap =
        (struct MinHeap*)malloc(sizeof(struct MinHeap));
    minHeap->pos = (int*)malloc(capacity * sizeof(int));
    minHeap->size = 0;
    minHeap->capacity = capacity;
    minHeap->array =
        (struct MinHeapNode**)malloc(capacity * sizeof(struct MinHeapNode*));
    return minHeap;
}

// A utility function to swap two nodes of min heap. Needed for min heapify 
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b)
{
    struct MinHeapNode* t = *a;
    *a = *b;
    *b = t;
}

// A standard function to heapify at given idx 
// This function also updates position of nodes when they are swapped. 
// Position is needed for decreaseKey() 
void minHeapify(struct MinHeap* minHeap, int idx)
{
    int smallest, left, right;
    smallest = idx;
    left = 2 * idx + 1;
    right = 2 * idx + 2;

    if (left < minHeap->size &&
        minHeap->array[left]->dist < minHeap->array[smallest]->dist)
        smallest = left;

    if (right < minHeap->size &&
        minHeap->array[right]->dist < minHeap->array[smallest]->dist)
        smallest = right;

    if (smallest != idx)
    {
        // The nodes to be swapped in min heap 
        MinHeapNode* smallestNode = minHeap->array[smallest];
        MinHeapNode* idxNode = minHeap->array[idx];

        // Swap positions 
        minHeap->pos[smallestNode->v] = idx;
        minHeap->pos[idxNode->v] = smallest;

        // Swap nodes 
        swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);

        minHeapify(minHeap, smallest);
    }
}

// A utility function to check if the given minHeap is ampty or not 
int isEmpty(struct MinHeap* minHeap)
{
    return minHeap->size == 0;
}

// Standard function to extract minimum node from heap 
struct MinHeapNode* extractMin(struct MinHeap* minHeap)
{
    if (isEmpty(minHeap))
        return NULL;

    // Store the root node 
    struct MinHeapNode* root = minHeap->array[0];

    // Replace root node with last node 
    struct MinHeapNode* lastNode = minHeap->array[minHeap->size - 1];
    minHeap->array[0] = lastNode;

    // Update position of last node 
    minHeap->pos[root->v] = minHeap->size - 1;
    minHeap->pos[lastNode->v] = 0;

    // Reduce heap size and heapify root 
    --minHeap->size;
    minHeapify(minHeap, 0);

    return root;
}

// Function to decreasy dist value of a given vertex v. This function 
// uses pos[] of min heap to get the current index of node in min heap 
void decreaseKey(struct MinHeap* minHeap, int v, int dist)
{
    // Get the index of v in  heap array 
    int i = minHeap->pos[v];

    // Get the node and update its dist value 
    minHeap->array[i]->dist = dist;

    // Travel up while the complete tree is not hepified. 
    // This is a O(Logn) loop 
    while (i && minHeap->array[i]->dist < minHeap->array[(i - 1) / 2]->dist)
    {
        // Swap this node with its parent 
        minHeap->pos[minHeap->array[i]->v] = (i - 1) / 2;
        minHeap->pos[minHeap->array[(i - 1) / 2]->v] = i;
        swapMinHeapNode(&minHeap->array[i], &minHeap->array[(i - 1) / 2]);

        // move to parent index 
        i = (i - 1) / 2;
    }
}

// A utility function to check if a given vertex 
// 'v' is in min heap or not 
bool isInMinHeap(struct MinHeap* minHeap, int v)
{
    if (minHeap->pos[v] < minHeap->size)
        return true;
    return false;
}


ll dist[300000];

void dijkstra(struct Graph* graph, int src)
{
    int V = graph->V;// Get the number of vertices in graph 
    // dist values used to pick minimum weight edge in cut 

    // minHeap represents set E 
    struct MinHeap* minHeap = createMinHeap(V);

    // Initialize min heap with all vertices. dist value of all vertices  
    for (int v = 0; v < V; ++v)
    {
        dist[v] = INT_MAX;
        minHeap->array[v] = newMinHeapNode(v, dist[v]);
        minHeap->pos[v] = v;
    }

    // Make dist value of src vertex as 0 so that it is extracted first 
    minHeap->array[src] = newMinHeapNode(src, dist[src]);
    minHeap->pos[src] = src;
    dist[src] = 0;
    decreaseKey(minHeap, src, dist[src]);

    // Initially size of min heap is equal to V 
    minHeap->size = V;

    // In the followin loop, min heap contains all nodes 
    // whose shortest distance is not yet finalized. 
    while (!isEmpty(minHeap))
    {
        // Extract the vertex with minimum distance value 
        struct MinHeapNode* minHeapNode = extractMin(minHeap);
        int u = minHeapNode->v; // Store the extracted vertex number 

        // Traverse through all adjacent vertices of u (the extracted 
        // vertex) and update their distance values 
        struct AdjListNode* pCrawl = graph->array[u].head;
        while (pCrawl != NULL)
        {
            int v = pCrawl->dest;

            // If shortest distance to v is not finalized yet, and distance to v 
            // through u is less than its previously calculated distance 
            if (isInMinHeap(minHeap, v) && dist[u] != INT_MAX &&
                pCrawl->weight + dist[u] < dist[v])
            {
                dist[v] = dist[u] + pCrawl->weight;

                // update distance value in min heap also 
                decreaseKey(minHeap, v, dist[v]);
            }
            pCrawl = pCrawl->next;
        }
    }
}

int m, n;

char grid[505][505];

int val(int i, int j)
{
    return i * n + j;
}

int main()
{
    cin >> m >> n;

    for (int i = 0; i < m; i++)
        for (int j = 0; j < n; j++)
            cin >> grid[i][j];

    struct Graph* graph = createGraph(m * n + 10);

    for (int i = 0; i < m; i++)
        for (int j = 0; j < n; j++)
        {
            int l = 1, r = 1, u = 1, d = 1;

            if (grid[i][j] == 'E')
            {
                r = 0;
                d = 1;
                l = 2;
                u = 3;
            }
            else if (grid[i][j] == 'W')
            {
                l = 0;
                u = 1;
                r = 2;
                d = 3;
            }
            else if (grid[i][j] == 'N')
            {
                u = 0;
                r = 1;
                d = 2;
                l = 3;
            }

            else if (grid[i][j] == 'S')
            {
                d = 0;
                l = 1;
                u = 2;
                r = 3;
            }
            else
            {
                l = r = d = u = 1e6;
            }

            if (i > 0)
                addEdge(graph, val(i, j), val(i - 1, j), u);

            if (i < m - 1)
                addEdge(graph, val(i, j), val(i + 1, j), d);

            if (j > 0)
                addEdge(graph, val(i, j), val(i, j - 1), l);

            if (j < n - 1)
                addEdge(graph, val(i, j), val(i, j + 1), r);
        }

    dijkstra(graph, 0);

    ll ans = dist[val(m - 1, n - 1)];

    if (ans > 750000)
        ans = -1;

    cout << ans << endl;

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 384 KB Output is correct
7 Correct 5 ms 256 KB Output is correct
8 Correct 5 ms 384 KB Output is correct
9 Correct 6 ms 384 KB Output is correct
10 Correct 5 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 384 KB Output is correct
7 Correct 5 ms 256 KB Output is correct
8 Correct 5 ms 384 KB Output is correct
9 Correct 6 ms 384 KB Output is correct
10 Correct 5 ms 384 KB Output is correct
11 Correct 5 ms 384 KB Output is correct
12 Correct 5 ms 384 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 5 ms 384 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 4 ms 384 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 5 ms 384 KB Output is correct
19 Correct 5 ms 384 KB Output is correct
20 Correct 5 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 4 ms 256 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 512 KB Output is correct
6 Correct 5 ms 512 KB Output is correct
7 Correct 5 ms 384 KB Output is correct
8 Correct 4 ms 384 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 4 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 384 KB Output is correct
7 Correct 5 ms 256 KB Output is correct
8 Correct 5 ms 384 KB Output is correct
9 Correct 6 ms 384 KB Output is correct
10 Correct 5 ms 384 KB Output is correct
11 Correct 5 ms 384 KB Output is correct
12 Correct 5 ms 384 KB Output is correct
13 Correct 5 ms 384 KB Output is correct
14 Correct 5 ms 384 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 4 ms 384 KB Output is correct
17 Correct 5 ms 384 KB Output is correct
18 Correct 5 ms 384 KB Output is correct
19 Correct 5 ms 384 KB Output is correct
20 Correct 5 ms 384 KB Output is correct
21 Correct 5 ms 384 KB Output is correct
22 Correct 4 ms 384 KB Output is correct
23 Correct 4 ms 256 KB Output is correct
24 Correct 5 ms 384 KB Output is correct
25 Correct 5 ms 512 KB Output is correct
26 Correct 5 ms 384 KB Output is correct
27 Correct 5 ms 384 KB Output is correct
28 Correct 5 ms 384 KB Output is correct
29 Correct 5 ms 512 KB Output is correct
30 Correct 5 ms 512 KB Output is correct
31 Correct 5 ms 384 KB Output is correct
32 Correct 4 ms 384 KB Output is correct
33 Correct 5 ms 384 KB Output is correct
34 Correct 4 ms 384 KB Output is correct
35 Correct 29 ms 7552 KB Output is correct
36 Correct 7 ms 1024 KB Output is correct
37 Correct 31 ms 8704 KB Output is correct
38 Correct 46 ms 13184 KB Output is correct
39 Correct 324 ms 77944 KB Output is correct
40 Correct 340 ms 78072 KB Output is correct
41 Correct 339 ms 77944 KB Output is correct
42 Correct 330 ms 78056 KB Output is correct
43 Correct 264 ms 77692 KB Output is correct
44 Correct 333 ms 78200 KB Output is correct