Submission #245505

# Submission time Handle Problem Language Result Execution time Memory
245505 2020-07-06T14:31:32 Z rp_o_02 Awesome Arrowland Adventure (eJOI19_adventure) C++14
16 / 100
5 ms 640 KB
// eJOI19_adventure.cpp : This file contains the 'main' function. Program execution begins and ends there.
//

#include <iostream>
#include <stdio.h> 
#include <stdlib.h> 
#include <limits.h> 

using namespace std;
typedef long long ll;

// A structure to represent a node in adjacency list 
struct AdjListNode
{
    int dest;
    int weight;
    struct AdjListNode* next;
};

// A structure to represent an adjacency list 
struct AdjList
{
    struct AdjListNode* head;  // pointer to head node of list 
};

// A structure to represent a graph. A graph is an array of adjacency lists. 
// Size of array will be V (number of vertices in graph) 
struct Graph
{
    int V;
    struct AdjList* array;
};

// A utility function to create a new adjacency list node 
struct AdjListNode* newAdjListNode(int dest, int weight)
{
    struct AdjListNode* newNode =
        (struct AdjListNode*)malloc(sizeof(struct AdjListNode));
    newNode->dest = dest;
    newNode->weight = weight;
    newNode->next = NULL;
    return newNode;
}

// A utility function that creates a graph of V vertices 
struct Graph* createGraph(int V)
{
    struct Graph* graph = (struct Graph*)malloc(sizeof(struct Graph));
    graph->V = V;

    // Create an array of adjacency lists.  Size of array will be V 
    graph->array = (struct AdjList*)malloc(V * sizeof(struct AdjList));

    // Initialize each adjacency list as empty by making head as NULL 
    for (int i = 0; i < V; ++i)
        graph->array[i].head = NULL;

    return graph;
}

// Adds an edge to an undirected graph 
void addEdge(struct Graph* graph, int src, int dest, int weight)
{
    // Add an edge from src to dest.  A new node is added to the adjacency 
    // list of src.  The node is added at the beginning 
    struct AdjListNode* newNode = newAdjListNode(dest, weight);
    newNode->next = graph->array[src].head;
    graph->array[src].head = newNode;

    // Since graph is undirected, add an edge from dest to src also 
    newNode = newAdjListNode(src, 1e5);
    newNode->next = graph->array[dest].head;
    graph->array[dest].head = newNode;
}

// Structure to represent a min heap node 
struct MinHeapNode
{
    int  v;
    ll dist;
};

// Structure to represent a min heap 
struct MinHeap
{
    int size;      // Number of heap nodes present currently 
    int capacity;  // Capacity of min heap 
    int* pos;     // This is needed for decreaseKey() 
    struct MinHeapNode** array;
};

// A utility function to create a new Min Heap Node 
struct MinHeapNode* newMinHeapNode(int v, int dist)
{
    struct MinHeapNode* minHeapNode =
        (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode));
    minHeapNode->v = v;
    minHeapNode->dist = dist;
    return minHeapNode;
}

// A utility function to create a Min Heap 
struct MinHeap* createMinHeap(int capacity)
{
    struct MinHeap* minHeap =
        (struct MinHeap*)malloc(sizeof(struct MinHeap));
    minHeap->pos = (int*)malloc(capacity * sizeof(int));
    minHeap->size = 0;
    minHeap->capacity = capacity;
    minHeap->array =
        (struct MinHeapNode**)malloc(capacity * sizeof(struct MinHeapNode*));
    return minHeap;
}

// A utility function to swap two nodes of min heap. Needed for min heapify 
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b)
{
    struct MinHeapNode* t = *a;
    *a = *b;
    *b = t;
}

// A standard function to heapify at given idx 
// This function also updates position of nodes when they are swapped. 
// Position is needed for decreaseKey() 
void minHeapify(struct MinHeap* minHeap, int idx)
{
    int smallest, left, right;
    smallest = idx;
    left = 2 * idx + 1;
    right = 2 * idx + 2;

    if (left < minHeap->size &&
        minHeap->array[left]->dist < minHeap->array[smallest]->dist)
        smallest = left;

    if (right < minHeap->size &&
        minHeap->array[right]->dist < minHeap->array[smallest]->dist)
        smallest = right;

    if (smallest != idx)
    {
        // The nodes to be swapped in min heap 
        MinHeapNode* smallestNode = minHeap->array[smallest];
        MinHeapNode* idxNode = minHeap->array[idx];

        // Swap positions 
        minHeap->pos[smallestNode->v] = idx;
        minHeap->pos[idxNode->v] = smallest;

        // Swap nodes 
        swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);

        minHeapify(minHeap, smallest);
    }
}

// A utility function to check if the given minHeap is ampty or not 
int isEmpty(struct MinHeap* minHeap)
{
    return minHeap->size == 0;
}

// Standard function to extract minimum node from heap 
struct MinHeapNode* extractMin(struct MinHeap* minHeap)
{
    if (isEmpty(minHeap))
        return NULL;

    // Store the root node 
    struct MinHeapNode* root = minHeap->array[0];

    // Replace root node with last node 
    struct MinHeapNode* lastNode = minHeap->array[minHeap->size - 1];
    minHeap->array[0] = lastNode;

    // Update position of last node 
    minHeap->pos[root->v] = minHeap->size - 1;
    minHeap->pos[lastNode->v] = 0;

    // Reduce heap size and heapify root 
    --minHeap->size;
    minHeapify(minHeap, 0);

    return root;
}

// Function to decreasy dist value of a given vertex v. This function 
// uses pos[] of min heap to get the current index of node in min heap 
void decreaseKey(struct MinHeap* minHeap, int v, int dist)
{
    // Get the index of v in  heap array 
    int i = minHeap->pos[v];

    // Get the node and update its dist value 
    minHeap->array[i]->dist = dist;

    // Travel up while the complete tree is not hepified. 
    // This is a O(Logn) loop 
    while (i && minHeap->array[i]->dist < minHeap->array[(i - 1) / 2]->dist)
    {
        // Swap this node with its parent 
        minHeap->pos[minHeap->array[i]->v] = (i - 1) / 2;
        minHeap->pos[minHeap->array[(i - 1) / 2]->v] = i;
        swapMinHeapNode(&minHeap->array[i], &minHeap->array[(i - 1) / 2]);

        // move to parent index 
        i = (i - 1) / 2;
    }
}

// A utility function to check if a given vertex 
// 'v' is in min heap or not 
bool isInMinHeap(struct MinHeap* minHeap, int v)
{
    if (minHeap->pos[v] < minHeap->size)
        return true;
    return false;
}


ll dist[300000];

void dijkstra(struct Graph* graph, int src)
{
    int V = graph->V;// Get the number of vertices in graph 
    // dist values used to pick minimum weight edge in cut 

    // minHeap represents set E 
    struct MinHeap* minHeap = createMinHeap(V);

    // Initialize min heap with all vertices. dist value of all vertices  
    for (int v = 0; v < V; ++v)
    {
        dist[v] = INT_MAX;
        minHeap->array[v] = newMinHeapNode(v, dist[v]);
        minHeap->pos[v] = v;
    }

    // Make dist value of src vertex as 0 so that it is extracted first 
    minHeap->array[src] = newMinHeapNode(src, dist[src]);
    minHeap->pos[src] = src;
    dist[src] = 0;
    decreaseKey(minHeap, src, dist[src]);

    // Initially size of min heap is equal to V 
    minHeap->size = V;

    // In the followin loop, min heap contains all nodes 
    // whose shortest distance is not yet finalized. 
    while (!isEmpty(minHeap))
    {
        // Extract the vertex with minimum distance value 
        struct MinHeapNode* minHeapNode = extractMin(minHeap);
        int u = minHeapNode->v; // Store the extracted vertex number 

        // Traverse through all adjacent vertices of u (the extracted 
        // vertex) and update their distance values 
        struct AdjListNode* pCrawl = graph->array[u].head;
        while (pCrawl != NULL)
        {
            int v = pCrawl->dest;

            // If shortest distance to v is not finalized yet, and distance to v 
            // through u is less than its previously calculated distance 
            if (isInMinHeap(minHeap, v) && dist[u] != INT_MAX &&
                pCrawl->weight + dist[u] < dist[v])
            {
                dist[v] = dist[u] + pCrawl->weight;

                // update distance value in min heap also 
                decreaseKey(minHeap, v, dist[v]);
            }
            pCrawl = pCrawl->next;
        }
    }
}

int m, n;

char grid[505][505];

int val(int i, int j)
{
    return i * n + j;
}

int main()
{
    cin >> m >> n;

    for (int i = 0; i < m; i++)
        for (int j = 0; j < n; j++)
            cin >> grid[i][j];

    struct Graph* graph = createGraph(m * n + 10);

    for (int i = 0; i < m; i++)
        for (int j = 0; j < n; j++)
        {
            int l = 1, r = 1, u = 1, d = 1;

            if (grid[i][j] == 'E')
            {
                r = 0;
                d = 1;
                l = 2;
                u = 3;
            }
            else if (grid[i][j] == 'W')
            {
                l = 0;
                u = 1;
                r = 2;
                d = 3;
            }
            else if (grid[i][j] == 'N')
            {
                u = 0;
                r = 1;
                d = 2;
                l = 3;
            }

            else if (grid[i][j] == 'S')
            {
                d = 0;
                l = 1;
                u = 2;
                r = 3;
            }
            else
            {
                l = r = d = u = 1e6;
            }

            if (i > 0)
                addEdge(graph, val(i, j), val(i - 1, j), u);

            if (i < m - 1)
                addEdge(graph, val(i, j), val(i + 1, j), d);

            if (j > 0)
                addEdge(graph, val(i, j), val(i, j - 1), l);

            if (j < n - 1)
                addEdge(graph, val(i, j), val(i, j + 1), r);
        }

    dijkstra(graph, 0);

    ll ans = dist[val(m - 1, n - 1)];

    if (ans > 750000)
        ans = -1;

    cout << ans << endl;

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Incorrect 5 ms 384 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Incorrect 5 ms 384 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Incorrect 5 ms 384 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 640 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 5 ms 384 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 512 KB Output is correct
6 Correct 5 ms 512 KB Output is correct
7 Correct 5 ms 384 KB Output is correct
8 Correct 5 ms 384 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 5 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Incorrect 5 ms 384 KB Output isn't correct
3 Halted 0 ms 0 KB -