Submission #245242

# Submission time Handle Problem Language Result Execution time Memory
245242 2020-07-05T20:06:46 Z A02 Tropical Garden (IOI11_garden) C++14
100 / 100
3090 ms 29516 KB
#include "garden.h"
#include "gardenlib.h"
#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <iostream>
#include <fstream>
#include <utility>
#include <queue>

using namespace std;

//void fill_iterated (int N, vector<vector<long long> > &iterated){
//
//    for (int i = 1; i < iterated.size(); i++){
//
//        for (int n = 0; n < 2 * N; n++){
//            iterated[i][n] = iterated[i-1][iterated[i-1][n]];
//        }
//
//    }
//
//}

//vector<long long> iterate_function (int N, long long applications, vector<vector<long long> > &iterated){
//
//
//    vector<long long> function_iterate (2 * N, 0);
//
//    for (int i = 0; i < 2 * N; i++){
//        function_iterate[i] = i;
//    }
//
//    for(int i = 0; i < 30; i++){
//
//        if (applications & (1 << i)){
//
//            for (int j = 0; j < 2 * N; j++){
//                function_iterate[j] = iterated[i][function_iterate[j]];
//            }
//
//        }
//
//    }
//
//    return function_iterate;
//}

vector<long long> count_preimage(long long N, long long P, int Q, int G[], vector<long long> &vertex_image, vector<vector<long long> > &pre_image){
//    cout << endl;
//    cout << P << endl;
//
//    for (int i = 0; i < 2 * N; i++){
//        cout << vertex_image[i] << ' ';
//    }
//    cout << endl;

    vector<long long> results (Q, 0);

    vector<long long> visited (2 * N, -1);

    visited[P] = 0;

    bool is_cycle = false;
    long long cycle_length = 0;

    queue<long long> to_visit;

    to_visit.push(P);

    while (!to_visit.empty()){

        long long current = to_visit.front();
        to_visit.pop();
        long long d = visited[current];

        for (long long i = 0; i < pre_image[current].size(); i++){
            if (pre_image[current][i] == P){
                is_cycle = true;
                cycle_length = d + 1;
            } else {
                to_visit.push(pre_image[current][i]);
                visited[pre_image[current][i]] = d + 1;
            }
        }

    }

    //cout << cycle_length << endl;

    for (int i = 0; i < Q; i++){

        int total = 0;
        for (int n = 0; n < N; n++){
            if (is_cycle){
                if (visited[n] != -1 && G[i] >= visited[n] && (G[i] - visited[n]) % cycle_length == 0){
                    total++;
                }
            } else {
                if (visited[n] != -1 && G[i] == visited[n]){
                    total++;
                }
            }
        }
        results[i] = total;

    }


    return results;

}

void count_routes(int N, int M, int P, int R[][2], int Q, int G[])
{

  vector<long long> vertex_image (2 * N, -1);
  //N + i is the trail going to vertex i that goes to i along the most beautiful trail

  vector<pair<long long, long long> > best_trail(N, make_pair(M + 1, -1));

    for (int i = 0; i < M; i++){
        long long s = R[i][0];
        long long e = R[i][1];
        if (best_trail[s].first > i){
            best_trail[s].first = i;
            best_trail[s].second = e;
        }
        if (best_trail[e].first > i){
            best_trail[e].first = i;
            best_trail[e].second = s;
        }
    }

    vector<pair<long, long> > second_best_trail(N, make_pair(M + 1, -1));

    for (int i = 0; i < M; i++){

        long long s = R[i][0];
        long long e = R[i][1];

        if (second_best_trail[s].first > i && i > best_trail[s].first){
            second_best_trail[s].first = i;
            second_best_trail[s].second = e;
        }

        if (second_best_trail[e].first > i && i > best_trail[e].first){
            second_best_trail[e].first = i;
            second_best_trail[e].second = s;
        }
    }

    for (int i = 0; i < N; i++){
        //cout << i << ' ' << best_trail[i].first << ' ' << best_trail[i].second << endl;
        //cout << second_best_trail[i].first << ' ' << second_best_trail[i].second << endl;

        if (second_best_trail[i].second == -1){
            second_best_trail[i] = best_trail[i];
        }
    }

    for (int i = 0; i < N; i++){
        long long new_fountain = best_trail[i].second;

        if (best_trail[i].first == best_trail[new_fountain].first){
            vertex_image[i] = new_fountain + N;
        } else {
            vertex_image[i] = new_fountain;
        }

        new_fountain = second_best_trail[i].second;

        if (second_best_trail[i].first == best_trail[new_fountain].first){
            vertex_image[i + N] = new_fountain + N;
        } else {
            vertex_image[i + N] = new_fountain;
        }
    }

    //target is p or p+N

//    for (int i = 0; i < N; i++){
//        cout << i << " : " << vertex_image[i] << ' ' << vertex_image[i + N] << endl;
//    }

//    vector<vector<long long> > iterated (30, vector<long long> (2 * N, 0));
//
//    iterated[0] = vertex_image;
//
//    fill_iterated(N, iterated);
//
//    for (int i = 0; i < 30; i++){
//        cout << endl;
//        for (int j = 0; j < 2 * N; j++){
//            cout << iterated[i][j] << ' ';
//        }
//        cout << endl << endl;
//    }

//    vector<long long> function_iterate = iterate_function(N, 3, iterated);

//    for (int i = 0; i < 2 * N; i++){
//        cout << function_iterate[i] << ' ';
//    }

//    cout << endl;


    vector<vector<long long> > pre_image (2 * N, vector<long long>());

    for (int i = 0; i < 2 * N; i++){
        pre_image[vertex_image[i]].push_back(i);
    }

    vector<long long> R1 = count_preimage(N, P, Q, G, vertex_image, pre_image);
    vector<long long> R2 = count_preimage(N, P + N, Q, G, vertex_image, pre_image);



    for(int i=0; i<Q; i++){

//        vector<long long> function_iterate = iterate_function(N, G[i], iterated);
//        int total = 0;
//        for (int i = 0; i < N; i++){
//            if (function_iterate[i] == P || function_iterate[i] == P + N){
//                total++;
//            }
//        }


        answer(R1[i] + R2[i]);
    }
}


Compilation message

garden.cpp: In function 'std::vector<long long int> count_preimage(long long int, long long int, int, int*, std::vector<long long int>&, std::vector<std::vector<long long int> >&)':
garden.cpp:78:33: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         for (long long i = 0; i < pre_image[current].size(); i++){
                               ~~^~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 5 ms 512 KB Output is correct
3 Correct 5 ms 512 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 512 KB Output is correct
7 Correct 5 ms 384 KB Output is correct
8 Correct 5 ms 512 KB Output is correct
9 Correct 7 ms 640 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 5 ms 512 KB Output is correct
3 Correct 5 ms 512 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 512 KB Output is correct
7 Correct 5 ms 384 KB Output is correct
8 Correct 5 ms 512 KB Output is correct
9 Correct 7 ms 640 KB Output is correct
10 Correct 5 ms 384 KB Output is correct
11 Correct 15 ms 4384 KB Output is correct
12 Correct 27 ms 7032 KB Output is correct
13 Correct 45 ms 16716 KB Output is correct
14 Correct 118 ms 23228 KB Output is correct
15 Correct 130 ms 23672 KB Output is correct
16 Correct 86 ms 16864 KB Output is correct
17 Correct 81 ms 14668 KB Output is correct
18 Correct 27 ms 7032 KB Output is correct
19 Correct 96 ms 23224 KB Output is correct
20 Correct 126 ms 23672 KB Output is correct
21 Correct 90 ms 16760 KB Output is correct
22 Correct 100 ms 14668 KB Output is correct
23 Correct 97 ms 25552 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 512 KB Output is correct
2 Correct 5 ms 512 KB Output is correct
3 Correct 5 ms 512 KB Output is correct
4 Correct 5 ms 384 KB Output is correct
5 Correct 5 ms 384 KB Output is correct
6 Correct 5 ms 512 KB Output is correct
7 Correct 5 ms 384 KB Output is correct
8 Correct 5 ms 512 KB Output is correct
9 Correct 7 ms 640 KB Output is correct
10 Correct 5 ms 384 KB Output is correct
11 Correct 15 ms 4384 KB Output is correct
12 Correct 27 ms 7032 KB Output is correct
13 Correct 45 ms 16716 KB Output is correct
14 Correct 118 ms 23228 KB Output is correct
15 Correct 130 ms 23672 KB Output is correct
16 Correct 86 ms 16864 KB Output is correct
17 Correct 81 ms 14668 KB Output is correct
18 Correct 27 ms 7032 KB Output is correct
19 Correct 96 ms 23224 KB Output is correct
20 Correct 126 ms 23672 KB Output is correct
21 Correct 90 ms 16760 KB Output is correct
22 Correct 100 ms 14668 KB Output is correct
23 Correct 97 ms 25552 KB Output is correct
24 Correct 6 ms 384 KB Output is correct
25 Correct 154 ms 4384 KB Output is correct
26 Correct 225 ms 7140 KB Output is correct
27 Correct 2522 ms 16996 KB Output is correct
28 Correct 1181 ms 23424 KB Output is correct
29 Correct 3090 ms 23928 KB Output is correct
30 Correct 1842 ms 16884 KB Output is correct
31 Correct 1752 ms 14832 KB Output is correct
32 Correct 190 ms 7084 KB Output is correct
33 Correct 1190 ms 23416 KB Output is correct
34 Correct 3079 ms 23800 KB Output is correct
35 Correct 1867 ms 16904 KB Output is correct
36 Correct 2302 ms 14840 KB Output is correct
37 Correct 1069 ms 25552 KB Output is correct
38 Correct 2825 ms 29516 KB Output is correct