Submission #240961

# Submission time Handle Problem Language Result Execution time Memory
240961 2020-06-21T22:02:21 Z rqi Election Campaign (JOI15_election_campaign) C++14
100 / 100
405 ms 52464 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 
 
typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 
 
typedef vector<int> vi; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 
 
#define mp make_pair
#define f first
#define s second
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 
 
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)
 
const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 
 
template<class T> bool ckmin(T& a, const T& b) { 
    return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
    return a < b ? a = b, 1 : 0; } 
int pct(int x) { return __builtin_popcount(x); } 
int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 
int fstTrue(function<bool(int)> f, int lo, int hi) {
    hi ++; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        int mid = (lo+hi)/2; 
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}
 
// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);
 
template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }
 
template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }
 
// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
template<class A> str ts(complex<A> c) { 
    stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) { 
    str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
    res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
    str res = ""; F0R(i,SZ) res += char('0'+b[i]);
    return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { // containers with begin(), end()
    bool fst = 1; str res = "{";
    for (const auto& x: v) {
        if (!fst) res += ", ";
        fst = 0; res += ts(x);
    }
    res += "}"; return res;
}
template<class A, class B> str ts(pair<A,B> p) {
    return "("+ts(p.f)+", "+ts(p.s)+")"; }
 
// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
    pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
    pr(h); if (sizeof...(t)) pr(" "); ps(t...); }
 
// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
    cerr << ts(h); if (sizeof...(t)) cerr << ", ";
    DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL
#define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 0
#endif
 
// FILE I/O
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); }
void setIO(string s = "") {
    unsyncIO();
    // cin.exceptions(cin.failbit); 
    // throws exception when do smth illegal
    // ex. try to read letter into int
    if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}
 
const int mx = 131072;
/**
 * Description: 1D range minimum query. Can also do queries 
     * for any associative operation in $O(1)$ with D\&C
 * Source: KACTL
 * Verification: 
    * https://cses.fi/problemset/stats/1647/
    * http://wcipeg.com/problem/ioi1223
    * https://pastebin.com/ChpniVZL
 * Memory: O(N\log N)
 * Time: O(1)
 */
 
template<class T> struct RMQ { // floor(log_2(x))
    int level(int x) { return 31-__builtin_clz(x); } 
    vector<T> v; vector<vi> jmp;
    int comb(int a, int b) { // index of min
        return v[a]==v[b]?min(a,b):(v[a]<v[b]?a:b); } 
    void init(const vector<T>& _v) {
        v = _v; jmp = {vi(sz(v))}; iota(all(jmp[0]),0);
        for (int j = 1; 1<<j <= sz(v); ++j) {
            jmp.pb(vi(sz(v)-(1<<j)+1));
            F0R(i,sz(jmp[j])) jmp[j][i] = comb(jmp[j-1][i],
                                    jmp[j-1][i+(1<<(j-1))]);
        }
    }
    int index(int l, int r) { // get index of min element
        int d = level(r-l+1);
        return comb(jmp[d][l],jmp[d][r-(1<<d)+1]); }
    T query(int l, int r) { return v[index(l,r)]; }
};
 
 
 
template<int SZ> struct LCA {
    int N, R = 1, depth[SZ], st[SZ];
    vi adj[SZ]; vpi tmp; RMQ<pi> r;
    void ae(int u, int v) { adj[u].pb(v), adj[v].pb(u); }
    void dfs(int u, int p) {
        st[u] = sz(tmp), depth[u] = depth[p]+1;
        tmp.eb(depth[u],u); 
        trav(v,adj[u]) if (v != p) 
            dfs(v,u), tmp.eb(depth[u],u);
    }
    void init(int _N) { N = _N; dfs(R,0); r.init(tmp); }
    int lca(int u, int v){
        u = st[u], v = st[v]; if (u > v) swap(u,v);
        return r.query(u,v).s; }
    /// int dist(int u, int v) {
        /// return depth[u]+depth[v]-2*depth[lca(u,v)]; }
    vpi compress(vi S) {
        static vi rev; rev.rsz(N+1);
        auto cmp = [&](int a, int b) { return st[a] < st[b]; };
        sort(all(S),cmp); R0F(i,sz(S)-1) S.pb(lca(S[i],S[i+1]));
        sort(all(S),cmp); S.erase(unique(all(S)),end(S));
        vpi ret{{0,S[0]}}; F0R(i,sz(S)) rev[S[i]] = i;
        F0R(i,sz(S)-1) ret.eb(rev[lca(S[i],S[i+1])],S[i+1]);
        return ret;
    }
};
 
 
/**
 * Description: range sum queries and point updates for $D$ dimensions
 * Source: https://codeforces.com/blog/entry/64914
 * Verification: SPOJ matsum
 * Usage: \texttt{BIT<int,10,10>} gives 2D BIT
 * Time: O((\log N)^D)
 */

template <class T, int ...Ns> struct BIT {
    T val = 0; void upd(T v) { val += v; }
    T query() { return val; }
};
template <class T, int N, int... Ns> struct BIT<T, N, Ns...> {
    BIT<T,Ns...> bit[N+1];
    template<typename... Args> void upd(int pos, Args... args) {
        for (; pos<=N; pos+=pos&-pos) bit[pos].upd(args...); }
    template<typename... Args> T sum(int r, Args... args) {
        T res=0; for (;r;r-=r&-r) res += bit[r].query(args...); 
        return res; }
    template<typename... Args> T query(int l, int r, Args... 
        args) { return sum(r,args...)-sum(l-1,args...); }
}; 

 
 
template<int SZ, bool VALS_IN_EDGES> struct HLD { 
    int N; vi adj[SZ];
    int par[SZ], sz[SZ], depth[SZ];
    int root[SZ], pos[SZ]; /// vi rpos;
    BIT<int, 100005> tree;
    void ae(int a, int b) { adj[a].pb(b), adj[b].pb(a); }
    void dfsSz(int v = 1) {
        if (par[v]) adj[v].erase(find(all(adj[v]),par[v]));
        sz[v] = 1;
        trav(u,adj[v]) {
            par[u] = v; depth[u] = depth[v]+1;
            dfsSz(u); sz[v] += sz[u];
            if (sz[u] > sz[adj[v][0]]) swap(u, adj[v][0]);
        }
    }
    void dfsHld(int v = 1) {
        static int t = 1; pos[v] = t++; /// rpos.pb(v);
        trav(u,adj[v]) {
            root[u] = (u == adj[v][0] ? root[v] : u);
            dfsHld(u); }
    }
    void init(int _N) {
        N = _N; par[1] = depth[1] = 0; root[1] = 1; 
        dfsSz(); dfsHld(); 
    }
    
    template <class BinaryOp>
    void processPath(int u, int v, BinaryOp op) {
        for (; root[u] != root[v]; v = par[root[v]]) {
            if (depth[root[u]] > depth[root[v]]) swap(u, v);
            op(pos[root[v]], pos[v]); }
        if (depth[u] > depth[v]) swap(u, v);
        op(pos[u]+VALS_IN_EDGES, pos[v]); 
    }
    void modifyPoint(int u, int val) {
        //dbg(u, pos[u]);
            tree.upd(pos[u],val); }
 
    int queryPath(int u, int v) { 
        int res = 0; processPath(u,v,[this,&res](int l,int r) { 
            res += tree.query(l,r); });
        return res; }
};
 
 
 
 
int N, M;
vi adj[mx];
int A[mx];
int B[mx];
int C[mx];
vi queries[mx];
int dp1[mx];
int dp2[mx];
LCA<mx> lca;
HLD<mx, false> hld; 
 
void solve(int node, int prv = -1){
    for(auto u: adj[node]){
        if(u == prv) continue;
        solve(u, node);
        dp2[node]+=dp1[u];
    }
    hld.modifyPoint(node, dp2[node]);
    //hld.modifySubtree(node, dp2[node]);
    int curans = dp2[node];
    for(auto u: queries[node]){
        //ckmax(curans, int(hld.query))
        //dbg(A[u], B[u], hld.queryPath(A[u], B[u]));
        ckmax(curans, int(hld.queryPath(A[u], B[u])+C[u]));
    }
    dp1[node] = curans;
    hld.modifyPoint(node, -dp1[node]);
    //dbg(node, dp1[node], dp2[node]);
}
 
int main() {
    setIO();
    cin >> N;
    for(int i = 1; i <= N-1; i++){
        int X, Y;
        cin >> X >> Y;
        adj[X].pb(Y);
        adj[Y].pb(X);
        lca.ae(X, Y);
        hld.ae(X, Y);
    }
    lca.init(N);
    hld.init(N);
    cin >> M;
    for(int i = 1; i <= M; i++){
        cin >> A[i] >> B[i] >> C[i];
        queries[lca.lca(A[i], B[i])].pb(i);
    }
 
    solve(1);
    ps(dp1[1]);
    // you should actually read the stuff at the bottom
}
 
/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?)
    * do smth instead of nothing and stay organized
    * WRITE STUFF DOWN
*/

Compilation message

election_campaign.cpp: In function 'void setIn(std::__cxx11::string)':
election_campaign.cpp:128:31: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                        ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
election_campaign.cpp: In function 'void setOut(std::__cxx11::string)':
election_campaign.cpp:129:32: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 12 ms 13056 KB Output is correct
2 Correct 12 ms 13056 KB Output is correct
3 Correct 14 ms 13184 KB Output is correct
4 Correct 12 ms 13312 KB Output is correct
5 Correct 226 ms 42852 KB Output is correct
6 Correct 102 ms 49896 KB Output is correct
7 Correct 200 ms 47524 KB Output is correct
8 Correct 182 ms 43368 KB Output is correct
9 Correct 192 ms 45800 KB Output is correct
10 Correct 175 ms 43636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 13 ms 13184 KB Output is correct
2 Correct 12 ms 13056 KB Output is correct
3 Correct 13 ms 13440 KB Output is correct
4 Correct 154 ms 52456 KB Output is correct
5 Correct 164 ms 52460 KB Output is correct
6 Correct 156 ms 52456 KB Output is correct
7 Correct 160 ms 52328 KB Output is correct
8 Correct 154 ms 52328 KB Output is correct
9 Correct 155 ms 52328 KB Output is correct
10 Correct 162 ms 52352 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 13 ms 13184 KB Output is correct
2 Correct 12 ms 13056 KB Output is correct
3 Correct 13 ms 13440 KB Output is correct
4 Correct 154 ms 52456 KB Output is correct
5 Correct 164 ms 52460 KB Output is correct
6 Correct 156 ms 52456 KB Output is correct
7 Correct 160 ms 52328 KB Output is correct
8 Correct 154 ms 52328 KB Output is correct
9 Correct 155 ms 52328 KB Output is correct
10 Correct 162 ms 52352 KB Output is correct
11 Correct 25 ms 13824 KB Output is correct
12 Correct 161 ms 52304 KB Output is correct
13 Correct 167 ms 52364 KB Output is correct
14 Correct 153 ms 52332 KB Output is correct
15 Correct 164 ms 52328 KB Output is correct
16 Correct 157 ms 52328 KB Output is correct
17 Correct 154 ms 52380 KB Output is correct
18 Correct 163 ms 52328 KB Output is correct
19 Correct 157 ms 52328 KB Output is correct
20 Correct 159 ms 52456 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 354 ms 44424 KB Output is correct
2 Correct 160 ms 52328 KB Output is correct
3 Correct 264 ms 49256 KB Output is correct
4 Correct 231 ms 45160 KB Output is correct
5 Correct 277 ms 48872 KB Output is correct
6 Correct 223 ms 45288 KB Output is correct
7 Correct 316 ms 48616 KB Output is correct
8 Correct 332 ms 44908 KB Output is correct
9 Correct 167 ms 52456 KB Output is correct
10 Correct 251 ms 47720 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 13056 KB Output is correct
2 Correct 12 ms 13056 KB Output is correct
3 Correct 14 ms 13184 KB Output is correct
4 Correct 12 ms 13312 KB Output is correct
5 Correct 226 ms 42852 KB Output is correct
6 Correct 102 ms 49896 KB Output is correct
7 Correct 200 ms 47524 KB Output is correct
8 Correct 182 ms 43368 KB Output is correct
9 Correct 192 ms 45800 KB Output is correct
10 Correct 175 ms 43636 KB Output is correct
11 Correct 14 ms 13312 KB Output is correct
12 Correct 14 ms 13440 KB Output is correct
13 Correct 14 ms 13440 KB Output is correct
14 Correct 14 ms 13440 KB Output is correct
15 Correct 13 ms 13312 KB Output is correct
16 Correct 14 ms 13440 KB Output is correct
17 Correct 13 ms 13312 KB Output is correct
18 Correct 14 ms 13440 KB Output is correct
19 Correct 13 ms 13440 KB Output is correct
20 Correct 13 ms 13440 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 13056 KB Output is correct
2 Correct 12 ms 13056 KB Output is correct
3 Correct 14 ms 13184 KB Output is correct
4 Correct 12 ms 13312 KB Output is correct
5 Correct 226 ms 42852 KB Output is correct
6 Correct 102 ms 49896 KB Output is correct
7 Correct 200 ms 47524 KB Output is correct
8 Correct 182 ms 43368 KB Output is correct
9 Correct 192 ms 45800 KB Output is correct
10 Correct 175 ms 43636 KB Output is correct
11 Correct 13 ms 13184 KB Output is correct
12 Correct 12 ms 13056 KB Output is correct
13 Correct 13 ms 13440 KB Output is correct
14 Correct 154 ms 52456 KB Output is correct
15 Correct 164 ms 52460 KB Output is correct
16 Correct 156 ms 52456 KB Output is correct
17 Correct 160 ms 52328 KB Output is correct
18 Correct 154 ms 52328 KB Output is correct
19 Correct 155 ms 52328 KB Output is correct
20 Correct 162 ms 52352 KB Output is correct
21 Correct 25 ms 13824 KB Output is correct
22 Correct 161 ms 52304 KB Output is correct
23 Correct 167 ms 52364 KB Output is correct
24 Correct 153 ms 52332 KB Output is correct
25 Correct 164 ms 52328 KB Output is correct
26 Correct 157 ms 52328 KB Output is correct
27 Correct 154 ms 52380 KB Output is correct
28 Correct 163 ms 52328 KB Output is correct
29 Correct 157 ms 52328 KB Output is correct
30 Correct 159 ms 52456 KB Output is correct
31 Correct 354 ms 44424 KB Output is correct
32 Correct 160 ms 52328 KB Output is correct
33 Correct 264 ms 49256 KB Output is correct
34 Correct 231 ms 45160 KB Output is correct
35 Correct 277 ms 48872 KB Output is correct
36 Correct 223 ms 45288 KB Output is correct
37 Correct 316 ms 48616 KB Output is correct
38 Correct 332 ms 44908 KB Output is correct
39 Correct 167 ms 52456 KB Output is correct
40 Correct 251 ms 47720 KB Output is correct
41 Correct 14 ms 13312 KB Output is correct
42 Correct 14 ms 13440 KB Output is correct
43 Correct 14 ms 13440 KB Output is correct
44 Correct 14 ms 13440 KB Output is correct
45 Correct 13 ms 13312 KB Output is correct
46 Correct 14 ms 13440 KB Output is correct
47 Correct 13 ms 13312 KB Output is correct
48 Correct 14 ms 13440 KB Output is correct
49 Correct 13 ms 13440 KB Output is correct
50 Correct 13 ms 13440 KB Output is correct
51 Correct 405 ms 44760 KB Output is correct
52 Correct 163 ms 52464 KB Output is correct
53 Correct 268 ms 47848 KB Output is correct
54 Correct 233 ms 45156 KB Output is correct
55 Correct 387 ms 44560 KB Output is correct
56 Correct 165 ms 52380 KB Output is correct
57 Correct 255 ms 48488 KB Output is correct
58 Correct 234 ms 45164 KB Output is correct
59 Correct 386 ms 44776 KB Output is correct
60 Correct 175 ms 52328 KB Output is correct
61 Correct 265 ms 48488 KB Output is correct
62 Correct 210 ms 45412 KB Output is correct
63 Correct 344 ms 44776 KB Output is correct
64 Correct 155 ms 52328 KB Output is correct
65 Correct 256 ms 48488 KB Output is correct
66 Correct 243 ms 45136 KB Output is correct
67 Correct 320 ms 44520 KB Output is correct
68 Correct 159 ms 52424 KB Output is correct
69 Correct 312 ms 47336 KB Output is correct
70 Correct 228 ms 45288 KB Output is correct