Submission #240958

# Submission time Handle Problem Language Result Execution time Memory
240958 2020-06-21T21:19:54 Z rqi Election Campaign (JOI15_election_campaign) C++14
100 / 100
632 ms 73064 KB
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 

typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 

typedef vector<int> vi; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 

#define mp make_pair
#define f first
#define s second
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)

const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 

template<class T> bool ckmin(T& a, const T& b) { 
    return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
    return a < b ? a = b, 1 : 0; } 
int pct(int x) { return __builtin_popcount(x); } 
int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 
int fstTrue(function<bool(int)> f, int lo, int hi) {
    hi ++; assert(lo <= hi); // assuming f is increasing
    while (lo < hi) { // find first index such that f is true 
        int mid = (lo+hi)/2; 
        f(mid) ? hi = mid : lo = mid+1; 
    } 
    return lo;
}

// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);

template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }

template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }

// TO_STRING
#define ts to_string
str ts(char c) { return str(1,c); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(const char* s) { return (str)s; }
str ts(str s) { return s; }
template<class A> str ts(complex<A> c) { 
    stringstream ss; ss << c; return ss.str(); }
str ts(vector<bool> v) { 
    str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]);
    res += "}"; return res; }
template<size_t SZ> str ts(bitset<SZ> b) {
    str res = ""; F0R(i,SZ) res += char('0'+b[i]);
    return res; }
template<class A, class B> str ts(pair<A,B> p);
template<class T> str ts(T v) { // containers with begin(), end()
    bool fst = 1; str res = "{";
    for (const auto& x: v) {
        if (!fst) res += ", ";
        fst = 0; res += ts(x);
    }
    res += "}"; return res;
}
template<class A, class B> str ts(pair<A,B> p) {
    return "("+ts(p.f)+", "+ts(p.s)+")"; }

// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
    pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
    pr(h); if (sizeof...(t)) pr(" "); ps(t...); }

// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
    cerr << ts(h); if (sizeof...(t)) cerr << ", ";
    DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL
#define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 0
#endif

// FILE I/O
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); }
void setIO(string s = "") {
    unsyncIO();
    // cin.exceptions(cin.failbit); 
    // throws exception when do smth illegal
    // ex. try to read letter into int
    if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}


/**
 * Description: 1D range minimum query. Can also do queries 
     * for any associative operation in $O(1)$ with D\&C
 * Source: KACTL
 * Verification: 
    * https://cses.fi/problemset/stats/1647/
    * http://wcipeg.com/problem/ioi1223
    * https://pastebin.com/ChpniVZL
 * Memory: O(N\log N)
 * Time: O(1)
 */

template<class T> struct RMQ { // floor(log_2(x))
    int level(int x) { return 31-__builtin_clz(x); } 
    vector<T> v; vector<vi> jmp;
    int comb(int a, int b) { // index of min
        return v[a]==v[b]?min(a,b):(v[a]<v[b]?a:b); } 
    void init(const vector<T>& _v) {
        v = _v; jmp = {vi(sz(v))}; iota(all(jmp[0]),0);
        for (int j = 1; 1<<j <= sz(v); ++j) {
            jmp.pb(vi(sz(v)-(1<<j)+1));
            F0R(i,sz(jmp[j])) jmp[j][i] = comb(jmp[j-1][i],
                                    jmp[j-1][i+(1<<(j-1))]);
        }
    }
    int index(int l, int r) { // get index of min element
        int d = level(r-l+1);
        return comb(jmp[d][l],jmp[d][r-(1<<d)+1]); }
    T query(int l, int r) { return v[index(l,r)]; }
};



template<int SZ> struct LCA {
    int N, R = 1, depth[SZ], st[SZ];
    vi adj[SZ]; vpi tmp; RMQ<pi> r;
    void ae(int u, int v) { adj[u].pb(v), adj[v].pb(u); }
    void dfs(int u, int p) {
        st[u] = sz(tmp), depth[u] = depth[p]+1;
        tmp.eb(depth[u],u); 
        trav(v,adj[u]) if (v != p) 
            dfs(v,u), tmp.eb(depth[u],u);
    }
    void init(int _N) { N = _N; dfs(R,0); r.init(tmp); }
    int lca(int u, int v){
        u = st[u], v = st[v]; if (u > v) swap(u,v);
        return r.query(u,v).s; }
    /// int dist(int u, int v) {
        /// return depth[u]+depth[v]-2*depth[lca(u,v)]; }
    vpi compress(vi S) {
        static vi rev; rev.rsz(N+1);
        auto cmp = [&](int a, int b) { return st[a] < st[b]; };
        sort(all(S),cmp); R0F(i,sz(S)-1) S.pb(lca(S[i],S[i+1]));
        sort(all(S),cmp); S.erase(unique(all(S)),end(S));
        vpi ret{{0,S[0]}}; F0R(i,sz(S)) rev[S[i]] = i;
        F0R(i,sz(S)-1) ret.eb(rev[lca(S[i],S[i+1])],S[i+1]);
        return ret;
    }
};


/**
 * Description: 1D range update and query, $SZ=2^p$.
 * Source: USACO Counting Haybales
 * Verification: SPOJ Horrible
 */

template<class T, int SZ> struct LazySeg { 
    T sum[2*SZ], lazy[2*SZ]; 
    LazySeg() { F0R(i,2*SZ) sum[i] = lazy[i] = 0; }
    void push(int ind, int L, int R) { /// modify values for current node
        if (L != R) F0R(i,2) lazy[2*ind+i] += lazy[ind]; /// prop to children
        sum[ind] += (R-L+1)*lazy[ind]; lazy[ind] = 0; 
    } // recalc values for current node
    void pull(int ind) { sum[ind] = sum[2*ind]+sum[2*ind+1]; }
    void build() { ROF(i,1,SZ) pull(i); }
    void upd(int lo,int hi,T inc,int ind=1,int L=0, int R=SZ-1) {
        push(ind,L,R); if (hi < L || R < lo) return;
        if (lo <= L && R <= hi) { 
            lazy[ind] = inc; push(ind,L,R); return; }
        int M = (L+R)/2; upd(lo,hi,inc,2*ind,L,M); 
        upd(lo,hi,inc,2*ind+1,M+1,R); pull(ind);
    }
    T qsum(int lo, int hi, int ind=1, int L=0, int R = SZ-1) {
        push(ind,L,R); if (lo > R || L > hi) return 0;
        if (lo <= L && R <= hi) return sum[ind];
        int M = (L+R)/2; 
        return qsum(lo,hi,2*ind,L,M)+qsum(lo,hi,2*ind+1,M+1,R);
    }
};


template<int SZ, bool VALS_IN_EDGES> struct HLD { 
    int N; vi adj[SZ];
    int par[SZ], sz[SZ], depth[SZ];
    int root[SZ], pos[SZ]; /// vi rpos;
    void ae(int a, int b) { adj[a].pb(b), adj[b].pb(a); }
    void dfsSz(int v = 1) {
        if (par[v]) adj[v].erase(find(all(adj[v]),par[v]));
        sz[v] = 1;
        trav(u,adj[v]) {
            par[u] = v; depth[u] = depth[v]+1;
            dfsSz(u); sz[v] += sz[u];
            if (sz[u] > sz[adj[v][0]]) swap(u, adj[v][0]);
        }
    }
    void dfsHld(int v = 1) {
        static int t = 0; pos[v] = t++; /// rpos.pb(v);
        trav(u,adj[v]) {
            root[u] = (u == adj[v][0] ? root[v] : u);
            dfsHld(u); }
    }
    void init(int _N) {
        N = _N; par[1] = depth[1] = 0; root[1] = 1; 
        dfsSz(); dfsHld(); }
    LazySeg<ll,SZ> tree;
    template <class BinaryOp>
    void processPath(int u, int v, BinaryOp op) {
        for (; root[u] != root[v]; v = par[root[v]]) {
            if (depth[root[u]] > depth[root[v]]) swap(u, v);
            op(pos[root[v]], pos[v]); }
        if (depth[u] > depth[v]) swap(u, v);
        op(pos[u]+VALS_IN_EDGES, pos[v]); 
    }
    void modifyPath(int u, int v, int val) { 
        processPath(u,v,[this, &val](int l,int r) { 
            tree.upd(l,r,val); }); }
    void modifySubtree(int v, int val) { 
        tree.upd(pos[v]+VALS_IN_EDGES,pos[v]+sz[v]-1,val); }
    ll queryPath(int u, int v) { 
        ll res = 0; processPath(u,v,[this,&res](int l,int r) { 
            res += tree.qsum(l,r); });
        return res; }
};



const int mx = 131072;
int N, M;
vi adj[mx];
int A[mx];
int B[mx];
int C[mx];
vi queries[mx];
int dp1[mx];
int dp2[mx];
LCA<mx> lca;
HLD<mx, false> hld; 

void solve(int node, int prv = -1){
    for(auto u: adj[node]){
        if(u == prv) continue;
        solve(u, node);
        dp2[node]+=dp1[u];
    }
    hld.modifyPath(node, node, dp2[node]);
    int curans = dp2[node];
    for(auto u: queries[node]){
        ckmax(curans, int(hld.queryPath(A[u], B[u])+C[u]));
    }
    dp1[node] = curans;
    hld.modifyPath(node, node, -dp1[node]);
}

int main() {
    setIO();
    cin >> N;
    for(int i = 1; i <= N-1; i++){
        int X, Y;
        cin >> X >> Y;
        adj[X].pb(Y);
        adj[Y].pb(X);
        lca.ae(X, Y);
        hld.ae(X, Y);
    }
    lca.init(N);
    hld.init(N);
    cin >> M;
    for(int i = 1; i <= M; i++){
        cin >> A[i] >> B[i] >> C[i];
        queries[lca.lca(A[i], B[i])].pb(i);
    }
    solve(1);
    ps(dp1[1]);
    // you should actually read the stuff at the bottom
}

/* stuff you should look for
    * int overflow, array bounds
    * special cases (n=1?)
    * do smth instead of nothing and stay organized
    * WRITE STUFF DOWN
*/

Compilation message

election_campaign.cpp: In function 'void setIn(std::__cxx11::string)':
election_campaign.cpp:128:31: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setIn(string s) { freopen(s.c_str(),"r",stdin); }
                        ~~~~~~~^~~~~~~~~~~~~~~~~~~~~
election_campaign.cpp: In function 'void setOut(std::__cxx11::string)':
election_campaign.cpp:129:32: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
 void setOut(string s) { freopen(s.c_str(),"w",stdout); }
                         ~~~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 16 ms 16768 KB Output is correct
2 Correct 15 ms 16896 KB Output is correct
3 Correct 14 ms 16896 KB Output is correct
4 Correct 16 ms 17024 KB Output is correct
5 Correct 282 ms 46564 KB Output is correct
6 Correct 144 ms 67816 KB Output is correct
7 Correct 235 ms 60396 KB Output is correct
8 Correct 214 ms 47032 KB Output is correct
9 Correct 256 ms 55916 KB Output is correct
10 Correct 219 ms 47224 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 16896 KB Output is correct
2 Correct 14 ms 16640 KB Output is correct
3 Correct 17 ms 17328 KB Output is correct
4 Correct 239 ms 70100 KB Output is correct
5 Correct 251 ms 72680 KB Output is correct
6 Correct 234 ms 72552 KB Output is correct
7 Correct 258 ms 72624 KB Output is correct
8 Correct 238 ms 72656 KB Output is correct
9 Correct 222 ms 72680 KB Output is correct
10 Correct 236 ms 72532 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 16896 KB Output is correct
2 Correct 14 ms 16640 KB Output is correct
3 Correct 17 ms 17328 KB Output is correct
4 Correct 239 ms 70100 KB Output is correct
5 Correct 251 ms 72680 KB Output is correct
6 Correct 234 ms 72552 KB Output is correct
7 Correct 258 ms 72624 KB Output is correct
8 Correct 238 ms 72656 KB Output is correct
9 Correct 222 ms 72680 KB Output is correct
10 Correct 236 ms 72532 KB Output is correct
11 Correct 29 ms 18048 KB Output is correct
12 Correct 242 ms 72808 KB Output is correct
13 Correct 245 ms 73064 KB Output is correct
14 Correct 230 ms 72936 KB Output is correct
15 Correct 244 ms 73064 KB Output is correct
16 Correct 231 ms 72912 KB Output is correct
17 Correct 237 ms 72808 KB Output is correct
18 Correct 239 ms 72808 KB Output is correct
19 Correct 245 ms 72936 KB Output is correct
20 Correct 243 ms 72808 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 632 ms 48232 KB Output is correct
2 Correct 220 ms 72552 KB Output is correct
3 Correct 379 ms 64232 KB Output is correct
4 Correct 367 ms 51428 KB Output is correct
5 Correct 360 ms 62824 KB Output is correct
6 Correct 364 ms 51436 KB Output is correct
7 Correct 429 ms 62316 KB Output is correct
8 Correct 477 ms 50920 KB Output is correct
9 Correct 222 ms 72552 KB Output is correct
10 Correct 390 ms 59884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 16768 KB Output is correct
2 Correct 15 ms 16896 KB Output is correct
3 Correct 14 ms 16896 KB Output is correct
4 Correct 16 ms 17024 KB Output is correct
5 Correct 282 ms 46564 KB Output is correct
6 Correct 144 ms 67816 KB Output is correct
7 Correct 235 ms 60396 KB Output is correct
8 Correct 214 ms 47032 KB Output is correct
9 Correct 256 ms 55916 KB Output is correct
10 Correct 219 ms 47224 KB Output is correct
11 Correct 17 ms 17024 KB Output is correct
12 Correct 16 ms 17408 KB Output is correct
13 Correct 17 ms 17280 KB Output is correct
14 Correct 18 ms 17152 KB Output is correct
15 Correct 17 ms 17152 KB Output is correct
16 Correct 16 ms 17152 KB Output is correct
17 Correct 17 ms 17152 KB Output is correct
18 Correct 16 ms 17280 KB Output is correct
19 Correct 16 ms 17152 KB Output is correct
20 Correct 15 ms 17280 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 16768 KB Output is correct
2 Correct 15 ms 16896 KB Output is correct
3 Correct 14 ms 16896 KB Output is correct
4 Correct 16 ms 17024 KB Output is correct
5 Correct 282 ms 46564 KB Output is correct
6 Correct 144 ms 67816 KB Output is correct
7 Correct 235 ms 60396 KB Output is correct
8 Correct 214 ms 47032 KB Output is correct
9 Correct 256 ms 55916 KB Output is correct
10 Correct 219 ms 47224 KB Output is correct
11 Correct 16 ms 16896 KB Output is correct
12 Correct 14 ms 16640 KB Output is correct
13 Correct 17 ms 17328 KB Output is correct
14 Correct 239 ms 70100 KB Output is correct
15 Correct 251 ms 72680 KB Output is correct
16 Correct 234 ms 72552 KB Output is correct
17 Correct 258 ms 72624 KB Output is correct
18 Correct 238 ms 72656 KB Output is correct
19 Correct 222 ms 72680 KB Output is correct
20 Correct 236 ms 72532 KB Output is correct
21 Correct 29 ms 18048 KB Output is correct
22 Correct 242 ms 72808 KB Output is correct
23 Correct 245 ms 73064 KB Output is correct
24 Correct 230 ms 72936 KB Output is correct
25 Correct 244 ms 73064 KB Output is correct
26 Correct 231 ms 72912 KB Output is correct
27 Correct 237 ms 72808 KB Output is correct
28 Correct 239 ms 72808 KB Output is correct
29 Correct 245 ms 72936 KB Output is correct
30 Correct 243 ms 72808 KB Output is correct
31 Correct 632 ms 48232 KB Output is correct
32 Correct 220 ms 72552 KB Output is correct
33 Correct 379 ms 64232 KB Output is correct
34 Correct 367 ms 51428 KB Output is correct
35 Correct 360 ms 62824 KB Output is correct
36 Correct 364 ms 51436 KB Output is correct
37 Correct 429 ms 62316 KB Output is correct
38 Correct 477 ms 50920 KB Output is correct
39 Correct 222 ms 72552 KB Output is correct
40 Correct 390 ms 59884 KB Output is correct
41 Correct 17 ms 17024 KB Output is correct
42 Correct 16 ms 17408 KB Output is correct
43 Correct 17 ms 17280 KB Output is correct
44 Correct 18 ms 17152 KB Output is correct
45 Correct 17 ms 17152 KB Output is correct
46 Correct 16 ms 17152 KB Output is correct
47 Correct 17 ms 17152 KB Output is correct
48 Correct 16 ms 17280 KB Output is correct
49 Correct 16 ms 17152 KB Output is correct
50 Correct 15 ms 17280 KB Output is correct
51 Correct 511 ms 51180 KB Output is correct
52 Correct 236 ms 72808 KB Output is correct
53 Correct 394 ms 60648 KB Output is correct
54 Correct 325 ms 51556 KB Output is correct
55 Correct 622 ms 50920 KB Output is correct
56 Correct 240 ms 72936 KB Output is correct
57 Correct 385 ms 61804 KB Output is correct
58 Correct 390 ms 51688 KB Output is correct
59 Correct 482 ms 51304 KB Output is correct
60 Correct 247 ms 72820 KB Output is correct
61 Correct 418 ms 62188 KB Output is correct
62 Correct 367 ms 51812 KB Output is correct
63 Correct 604 ms 51052 KB Output is correct
64 Correct 252 ms 72936 KB Output is correct
65 Correct 399 ms 62184 KB Output is correct
66 Correct 330 ms 51560 KB Output is correct
67 Correct 613 ms 51048 KB Output is correct
68 Correct 242 ms 72940 KB Output is correct
69 Correct 364 ms 58728 KB Output is correct
70 Correct 366 ms 51688 KB Output is correct