Submission #240156

# Submission time Handle Problem Language Result Execution time Memory
240156 2020-06-18T08:48:46 Z IgorI Political Development (BOI17_politicaldevelopment) C++17
4 / 100
3000 ms 2560 KB
const int LG = 21;
const int N = 400030;
const long long MOD = 998244353;
const long long INF = 1e9;
const long long INFLL = 1e18;

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<vector<int> > vvi;
typedef vector<ll> vll;

#define forn(i, n) for (int (i) = 0; (i) != (n); (i)++)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define popcount(x) __builtin_popcount(x)
#define popcountll(x) __builtin_popcountll(x)
#define fi first
#define se second
#define re return
#define pb push_back
#define uniq(x) sort(all(x)); (x).resize(unique(all(x)) - (x).begin())

#ifdef LOCAL
#define dbg(x) cerr << __LINE__ << " " << #x << " " << x << endl
#define ln cerr << __LINE__ << endl
#else
#define dbg(x) void(0)
#define ln void(0)
#endif // LOCAL

int cx[4] = {-1, 0, 1, 0};
int cy[4] = {0, -1, 0, 1};
string Yes[2] = {"No", "Yes"};
string YES[2] = {"NO", "YES"};

ll inq(ll x, ll y)
{
    if (!y) re 1 % MOD;
    ll l = inq(x, y / 2);
    if (y % 2) re l * l % MOD * x % MOD;
    re l * l % MOD;
}

ll rev(ll x)
{
    return inq(x, MOD - 2);
}

bool __precomputed_combinatorics = 0;
vector<ll> __fact, __ufact, __rev;

void __precompute_combinatorics()
{
    __precomputed_combinatorics = 1;
    __fact.resize(N);
    __ufact.resize(N);
    __rev.resize(N);
    __rev[1] = 1;
    for (int i = 2; i < N; i++) __rev[i] = MOD - __rev[MOD % i] * (MOD / i) % MOD;
    __fact[0] = 1, __ufact[0] = 1;
    for (int i = 1; i < N; i++) __fact[i] = __fact[i - 1] * i % MOD, __ufact[i] = __ufact[i - 1] * __rev[i] % MOD;
}

ll fact(int x)
{
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[x];
}

ll cnk(int n, int k)
{
    if (k < 0 || k > n) return 0;
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[n] * __ufact[n - k] % MOD * __ufact[k] % MOD;
}

int Root(int x, vector<int> &root)
{
    if (x == root[x]) return x;
    return root[x] = Root(root[x], root);
}

void Merge(int v, int u, vector<int> &root, vector<int> &sz)
{
    v = Root(v, root), u = Root(u, root);
    if (v == u) return;
    if (sz[v] < sz[u])
    {
        sz[u] += sz[v];
        root[v] = u;
    }
    else
    {
        sz[v] += sz[u];
        root[u] = v;
    }
}

int ok(int x, int n)
{
    return 0 <= x && x < n;
}

void bfs(int v, vi &dist, vector<vi> &graph)
{
    fill(all(dist), -1);
    dist[v] = 0;
    vi q = {v};
    for (int i = 0; i < q.size(); i++)
    {
        for (auto u : graph[q[i]])
        {
            if (dist[u] == -1)
            {
                dist[u] = dist[q[i]] + 1;
                q.push_back(u);
            }
        }
    }
}

vector<int> z_func(string &s)
{
    vector<int> z(s.size());
    z[0] = s.size();
    int L = 0, R = 0;
    for (int i = 1; i < s.size(); i++)
    {
        z[i] = max(0, min(z[i - L], R - i));
        while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
        if (i + z[i] > R)
        {
            R = i + z[i];
            L = i;
        }
    }
    return z;
}

vector<int> p_func(string &s)
{
    vector<int> p(s.size());
    for (int i = 1; i < s.size(); i++)
    {
        int j = p[i - 1];
        while (j > 0 && s[i] != s[j])
            j = p[j - 1];
        if (s[i] == s[j])
            j++;
        p[i] = j;
    }
    return p;
}

vector<int> d1_func(string &s)
{
    vector<int> d1(s.size());
    int L = 0, R = -1;
    for (int i = 0; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d1[R - i + L]);
        while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
            k++;
        d1[i] = k--;
        if (i + k > R)
        {
            L = i - k;
            R = i + k;
        }
    }
    return d1;
}

vector<int> d2_func(string &s)
{
    vector<int> d2(s.size());
    int L = 0, R = -1;
    for (int i = 1; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d2[R - i + L + 1]);
        while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
            k++;
        d2[i] = k--;
        if (i + k > R)
        {
            L = i - k - 1;
            R = i + k;
        }
    }
    return d2;
}

ll log10(ll x)
{
    if (x < 10) re 1;
    re 1 + log10(x / 10);
}

ll ds(ll x)
{
    if (x < 10) return x;
    re x % 10 + ds(x / 10);
}

double sqr(double x)
{
    return x * x;
}

bool in(int bit, int mask)
{
    return (mask & (1 << bit)) > 0;
}

void Del(vector<int> &v, int pos)
{
    swap(v[pos], v[v.size() - 1]);
    v.pop_back();
}

long long g(vector<long long> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

int g(vector<int> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

signed main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, k;
    cin >> n >> k;
    vector<vector<int> > graph(n);
    map<pii, int> mm;
    forn(i, n)
    {
        int s;
        cin >> s;
        forn(j, s)
        {
            int a;
            cin >> a;
            graph[i].push_back(a);
            mm[{i, a}] = 1;
        }
    }
    set<pair<int, int> > deg_act;
    vector<int> isact(n, 1);
    vector<int> deg(n, 1);
    for (int i = 0; i < n; i++)
    {
        deg_act.insert({graph[i].size(), i});
        deg[i] = graph[i].size();
    }
    int ans = 1;
    for (int it = 0; it < 1; it++)
    {
        vector<int> V;
        for (int i = 0; i < n; i++)
            V.push_back(i);
        for (auto x : V)
        {
            vector<int> v;
            for (auto u : graph[x])
            {
                if (isact[u])
                    v.push_back(u);
            }
            forn(mask, (1 << v.size()))
            {
                if (popcount(mask) + 1 < ans) continue;
                int t = 1;
                for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                {
                    if (mm[{v[i], v[j]}] == 0) t = 0;
                    break;
                }
                if (t) ans = max(ans, popcount(mask) + 1);
            }
        }
        for (auto x : V)
        {
            isact[x] = 0;
            deg_act.erase({deg[x], x});
            for (auto u : graph[x])
            {
                if (isact[u])
                {
                    deg_act.erase({deg[u], u});
                    deg[u]--;
                    deg_act.insert({deg[u], u});
                }
            }
        }
    }
    cout << ans;
}

/* Note:
Check constants at the beginning of the code.
    N is set to 4e5 but be careful in problems with large constant factor.
    Setting N in every problem is more effective.
Check corner cases.
    N = 1
No def int long long for now.
Add something here.
*/

Compilation message

politicaldevelopment.cpp: In function 'void bfs(int, vi&, std::vector<std::vector<int> >&)':
politicaldevelopment.cpp:115:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < q.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> z_func(std::__cxx11::string&)':
politicaldevelopment.cpp:133:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:136:25: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
                ~~~~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> p_func(std::__cxx11::string&)':
politicaldevelopment.cpp:149:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d1_func(std::__cxx11::string&)':
politicaldevelopment.cpp:165:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:169:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
                ~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d2_func(std::__cxx11::string&)':
politicaldevelopment.cpp:185:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:189:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
                ~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'int main()':
politicaldevelopment.cpp:290:40: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                 for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                      ~~^~~~~~~~~~
politicaldevelopment.cpp:290:84: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                 for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                                                                  ~~^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 6 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 20 ms 2176 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1664 KB Output is correct
6 Correct 14 ms 1664 KB Output is correct
7 Correct 14 ms 1792 KB Output is correct
8 Correct 7 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 20 ms 2176 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1664 KB Output is correct
6 Correct 14 ms 1664 KB Output is correct
7 Correct 14 ms 1792 KB Output is correct
8 Correct 7 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 12 ms 1664 KB Output is correct
12 Correct 12 ms 1664 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 11 ms 1664 KB Output is correct
15 Correct 6 ms 384 KB Output is correct
16 Correct 13 ms 1664 KB Output is correct
17 Correct 4 ms 384 KB Output is correct
18 Correct 13 ms 1664 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 20 ms 2560 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 21 ms 2560 KB Output is correct
26 Correct 18 ms 2304 KB Output is correct
27 Correct 14 ms 1792 KB Output is correct
28 Correct 20 ms 2304 KB Output is correct
29 Correct 14 ms 1792 KB Output is correct
30 Correct 17 ms 2176 KB Output is correct
31 Correct 19 ms 2560 KB Output is correct
32 Correct 17 ms 2176 KB Output is correct
33 Correct 19 ms 2560 KB Output is correct
34 Correct 19 ms 2560 KB Output is correct
35 Correct 11 ms 1408 KB Output is correct
36 Correct 11 ms 1408 KB Output is correct
37 Correct 12 ms 1408 KB Output is correct
38 Execution timed out 3072 ms 892 KB Time limit exceeded
39 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 768 KB Output is correct
2 Incorrect 5 ms 384 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 20 ms 2176 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1664 KB Output is correct
6 Correct 14 ms 1664 KB Output is correct
7 Correct 14 ms 1792 KB Output is correct
8 Correct 7 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 12 ms 1664 KB Output is correct
12 Correct 12 ms 1664 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 11 ms 1664 KB Output is correct
15 Correct 6 ms 384 KB Output is correct
16 Correct 13 ms 1664 KB Output is correct
17 Correct 4 ms 384 KB Output is correct
18 Correct 13 ms 1664 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 20 ms 2560 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 21 ms 2560 KB Output is correct
26 Correct 18 ms 2304 KB Output is correct
27 Correct 14 ms 1792 KB Output is correct
28 Correct 20 ms 2304 KB Output is correct
29 Correct 14 ms 1792 KB Output is correct
30 Correct 17 ms 2176 KB Output is correct
31 Correct 19 ms 2560 KB Output is correct
32 Correct 17 ms 2176 KB Output is correct
33 Correct 19 ms 2560 KB Output is correct
34 Correct 19 ms 2560 KB Output is correct
35 Correct 11 ms 1408 KB Output is correct
36 Correct 11 ms 1408 KB Output is correct
37 Correct 12 ms 1408 KB Output is correct
38 Execution timed out 3072 ms 892 KB Time limit exceeded
39 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 384 KB Output is correct
2 Correct 4 ms 384 KB Output is correct
3 Correct 20 ms 2176 KB Output is correct
4 Correct 11 ms 1536 KB Output is correct
5 Correct 11 ms 1664 KB Output is correct
6 Correct 14 ms 1664 KB Output is correct
7 Correct 14 ms 1792 KB Output is correct
8 Correct 7 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 12 ms 1664 KB Output is correct
12 Correct 12 ms 1664 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 11 ms 1664 KB Output is correct
15 Correct 6 ms 384 KB Output is correct
16 Correct 13 ms 1664 KB Output is correct
17 Correct 4 ms 384 KB Output is correct
18 Correct 13 ms 1664 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 9 ms 1280 KB Output is correct
21 Correct 9 ms 1280 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 20 ms 2560 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 21 ms 2560 KB Output is correct
26 Correct 18 ms 2304 KB Output is correct
27 Correct 14 ms 1792 KB Output is correct
28 Correct 20 ms 2304 KB Output is correct
29 Correct 14 ms 1792 KB Output is correct
30 Correct 17 ms 2176 KB Output is correct
31 Correct 19 ms 2560 KB Output is correct
32 Correct 17 ms 2176 KB Output is correct
33 Correct 19 ms 2560 KB Output is correct
34 Correct 19 ms 2560 KB Output is correct
35 Correct 11 ms 1408 KB Output is correct
36 Correct 11 ms 1408 KB Output is correct
37 Correct 12 ms 1408 KB Output is correct
38 Execution timed out 3072 ms 892 KB Time limit exceeded
39 Halted 0 ms 0 KB -