Submission #240147

# Submission time Handle Problem Language Result Execution time Memory
240147 2020-06-18T07:45:46 Z IgorI Political Development (BOI17_politicaldevelopment) C++17
39 / 100
444 ms 33272 KB
const int LG = 21;
const int N = 400030;
const long long MOD = 998244353;
const long long INF = 1e9;
const long long INFLL = 1e18;

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<vector<int> > vvi;
typedef vector<ll> vll;

#define forn(i, n) for (int (i) = 0; (i) != (n); (i)++)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define popcount(x) __builtin_popcount(x)
#define popcountll(x) __builtin_popcountll(x)
#define fi first
#define se second
#define re return
#define pb push_back
#define uniq(x) sort(all(x)); (x).resize(unique(all(x)) - (x).begin())

#ifdef LOCAL
#define dbg(x) cerr << __LINE__ << " " << #x << " " << x << endl
#define ln cerr << __LINE__ << endl
#else
#define dbg(x) void(0)
#define ln void(0)
#endif // LOCAL

int cx[4] = {-1, 0, 1, 0};
int cy[4] = {0, -1, 0, 1};
string Yes[2] = {"No", "Yes"};
string YES[2] = {"NO", "YES"};

ll inq(ll x, ll y)
{
    if (!y) re 1 % MOD;
    ll l = inq(x, y / 2);
    if (y % 2) re l * l % MOD * x % MOD;
    re l * l % MOD;
}

ll rev(ll x)
{
    return inq(x, MOD - 2);
}

bool __precomputed_combinatorics = 0;
vector<ll> __fact, __ufact, __rev;

void __precompute_combinatorics()
{
    __precomputed_combinatorics = 1;
    __fact.resize(N);
    __ufact.resize(N);
    __rev.resize(N);
    __rev[1] = 1;
    for (int i = 2; i < N; i++) __rev[i] = MOD - __rev[MOD % i] * (MOD / i) % MOD;
    __fact[0] = 1, __ufact[0] = 1;
    for (int i = 1; i < N; i++) __fact[i] = __fact[i - 1] * i % MOD, __ufact[i] = __ufact[i - 1] * __rev[i] % MOD;
}

ll fact(int x)
{
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[x];
}

ll cnk(int n, int k)
{
    if (k < 0 || k > n) return 0;
    if (!__precomputed_combinatorics) __precompute_combinatorics();
    return __fact[n] * __ufact[n - k] % MOD * __ufact[k] % MOD;
}

int Root(int x, vector<int> &root)
{
    if (x == root[x]) return x;
    return root[x] = Root(root[x], root);
}

void Merge(int v, int u, vector<int> &root, vector<int> &sz)
{
    v = Root(v, root), u = Root(u, root);
    if (v == u) return;
    if (sz[v] < sz[u])
    {
        sz[u] += sz[v];
        root[v] = u;
    }
    else
    {
        sz[v] += sz[u];
        root[u] = v;
    }
}

int ok(int x, int n)
{
    return 0 <= x && x < n;
}

void bfs(int v, vi &dist, vector<vi> &graph)
{
    fill(all(dist), -1);
    dist[v] = 0;
    vi q = {v};
    for (int i = 0; i < q.size(); i++)
    {
        for (auto u : graph[q[i]])
        {
            if (dist[u] == -1)
            {
                dist[u] = dist[q[i]] + 1;
                q.push_back(u);
            }
        }
    }
}

vector<int> z_func(string &s)
{
    vector<int> z(s.size());
    z[0] = s.size();
    int L = 0, R = 0;
    for (int i = 1; i < s.size(); i++)
    {
        z[i] = max(0, min(z[i - L], R - i));
        while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
        if (i + z[i] > R)
        {
            R = i + z[i];
            L = i;
        }
    }
    return z;
}

vector<int> p_func(string &s)
{
    vector<int> p(s.size());
    for (int i = 1; i < s.size(); i++)
    {
        int j = p[i - 1];
        while (j > 0 && s[i] != s[j])
            j = p[j - 1];
        if (s[i] == s[j])
            j++;
        p[i] = j;
    }
    return p;
}

vector<int> d1_func(string &s)
{
    vector<int> d1(s.size());
    int L = 0, R = -1;
    for (int i = 0; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d1[R - i + L]);
        while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
            k++;
        d1[i] = k--;
        if (i + k > R)
        {
            L = i - k;
            R = i + k;
        }
    }
    return d1;
}

vector<int> d2_func(string &s)
{
    vector<int> d2(s.size());
    int L = 0, R = -1;
    for (int i = 1; i < s.size(); i++)
    {
        int k = 0;
        if (i <= R) k = min(R - i + 1, d2[R - i + L + 1]);
        while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
            k++;
        d2[i] = k--;
        if (i + k > R)
        {
            L = i - k - 1;
            R = i + k;
        }
    }
    return d2;
}

ll log10(ll x)
{
    if (x < 10) re 1;
    re 1 + log10(x / 10);
}

ll ds(ll x)
{
    if (x < 10) return x;
    re x % 10 + ds(x / 10);
}

double sqr(double x)
{
    return x * x;
}

bool in(int bit, int mask)
{
    return (mask & (1 << bit)) > 0;
}

void Del(vector<int> &v, int pos)
{
    swap(v[pos], v[v.size() - 1]);
    v.pop_back();
}

long long g(vector<long long> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

int g(vector<int> &p, int pos)
{
    if (ok(pos, p.size())) return p[pos];
    if (pos < 0 || p.size() == 0) return 0;
    return p.back();
}

signed main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, k;
    cin >> n >> k;
    assert(k <= 5);
    vector<vector<int> > graph(n);
    map<pii, int> mm;
    forn(i, n)
    {
        int s;
        cin >> s;
        forn(j, s)
        {
            int a;
            cin >> a;
            graph[i].push_back(a);
            mm[{i, a}] = 1;
        }
    }
    set<pair<int, int> > deg_act;
    vector<int> isact(n, 1);
    vector<int> deg(n, 1);
    for (int i = 0; i < n; i++)
    {
        deg_act.insert({graph[i].size(), i});
        deg[i] = graph[i].size();
    }
    int ans = 1;
    while (deg_act.size())
    {
        pair<int, int> t = *deg_act.begin();
        deg_act.erase(t);
        int x = t.second;
        vector<int> v;
        for (auto u : graph[x])
        {
            if (isact[u])
                v.push_back(u);
        }
        //check
        assert(v.size() == t.first);
        forn(mask, (1 << v.size()))
        {
            if (popcount(mask) + 1 < ans) continue;
            int t = 1;
            for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
            {
                if (mm[{v[i], v[j]}] == 0) t = 0;
                break;
            }
            if (t) ans = max(ans, popcount(mask) + 1);
        }
        //remove
        isact[x] = 0;
        for (auto u : v)
        {
            deg_act.erase({deg[u], u});
            deg[u]--;
            deg_act.insert({deg[u], u});
        }
    }
    cout << ans;
}

/* Note:
Check constants at the beginning of the code.
    N is set to 4e5 but be careful in problems with large constant factor.
    Setting N in every problem is more effective.
Check corner cases.
    N = 1
No def int long long for now.
Add something here.
*/

Compilation message

politicaldevelopment.cpp: In function 'void bfs(int, vi&, std::vector<std::vector<int> >&)':
politicaldevelopment.cpp:115:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < q.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> z_func(std::__cxx11::string&)':
politicaldevelopment.cpp:133:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:136:25: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + z[i] < s.size() && s[i + z[i]] == s[z[i]]) z[i]++;
                ~~~~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> p_func(std::__cxx11::string&)':
politicaldevelopment.cpp:149:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d1_func(std::__cxx11::string&)':
politicaldevelopment.cpp:165:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 0; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:169:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k >= 0 && s[i - k] == s[i + k])
                ~~~~~~^~~~~~~~~~
politicaldevelopment.cpp: In function 'std::vector<int> d2_func(std::__cxx11::string&)':
politicaldevelopment.cpp:185:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (int i = 1; i < s.size(); i++)
                     ~~^~~~~~~~~~
politicaldevelopment.cpp:189:22: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while (i + k < s.size() && i - k - 1 >= 0 && s[i - k - 1] == s[i + k])
                ~~~~~~^~~~~~~~~~
In file included from /usr/include/c++/7/cassert:44:0,
                 from /usr/include/x86_64-linux-gnu/c++/7/bits/stdc++.h:33,
                 from politicaldevelopment.cpp:7:
politicaldevelopment.cpp: In function 'int main()':
politicaldevelopment.cpp:286:25: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         assert(v.size() == t.first);
                ~~~~~~~~~^~~~~~
politicaldevelopment.cpp:291:36: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                  ~~^~~~~~~~~~
politicaldevelopment.cpp:291:80: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             for (int i = 0; t && i < v.size(); i++) for (int j = i + 1; t && j < v.size(); j++) if (in(i, mask) && in(j, mask))
                                                                              ~~^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 11 ms 1536 KB Output is correct
4 Correct 10 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 11 ms 1536 KB Output is correct
4 Correct 10 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1536 KB Output is correct
12 Correct 10 ms 1536 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 12 ms 1536 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 11 ms 1536 KB Output is correct
17 Correct 4 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 8 ms 1152 KB Output is correct
21 Correct 8 ms 1152 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 13 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 14 ms 1792 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 11 ms 1536 KB Output is correct
28 Correct 13 ms 1664 KB Output is correct
29 Correct 11 ms 1536 KB Output is correct
30 Correct 13 ms 1792 KB Output is correct
31 Correct 14 ms 1792 KB Output is correct
32 Correct 14 ms 1920 KB Output is correct
33 Correct 14 ms 1792 KB Output is correct
34 Correct 14 ms 1792 KB Output is correct
35 Correct 9 ms 1024 KB Output is correct
36 Correct 9 ms 1024 KB Output is correct
37 Correct 9 ms 1024 KB Output is correct
38 Correct 8 ms 768 KB Output is correct
39 Correct 7 ms 768 KB Output is correct
40 Correct 21 ms 2304 KB Output is correct
41 Correct 7 ms 768 KB Output is correct
42 Correct 19 ms 2304 KB Output is correct
43 Correct 19 ms 2304 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 768 KB Output is correct
2 Runtime error 5 ms 512 KB Execution killed with signal 11 (could be triggered by violating memory limits)
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 11 ms 1536 KB Output is correct
4 Correct 10 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1536 KB Output is correct
12 Correct 10 ms 1536 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 12 ms 1536 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 11 ms 1536 KB Output is correct
17 Correct 4 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 8 ms 1152 KB Output is correct
21 Correct 8 ms 1152 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 13 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 14 ms 1792 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 11 ms 1536 KB Output is correct
28 Correct 13 ms 1664 KB Output is correct
29 Correct 11 ms 1536 KB Output is correct
30 Correct 13 ms 1792 KB Output is correct
31 Correct 14 ms 1792 KB Output is correct
32 Correct 14 ms 1920 KB Output is correct
33 Correct 14 ms 1792 KB Output is correct
34 Correct 14 ms 1792 KB Output is correct
35 Correct 9 ms 1024 KB Output is correct
36 Correct 9 ms 1024 KB Output is correct
37 Correct 9 ms 1024 KB Output is correct
38 Correct 8 ms 768 KB Output is correct
39 Correct 7 ms 768 KB Output is correct
40 Correct 21 ms 2304 KB Output is correct
41 Correct 7 ms 768 KB Output is correct
42 Correct 19 ms 2304 KB Output is correct
43 Correct 19 ms 2304 KB Output is correct
44 Runtime error 5 ms 512 KB Execution killed with signal 11 (could be triggered by violating memory limits)
45 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 5 ms 384 KB Output is correct
2 Correct 5 ms 384 KB Output is correct
3 Correct 11 ms 1536 KB Output is correct
4 Correct 10 ms 1536 KB Output is correct
5 Correct 11 ms 1536 KB Output is correct
6 Correct 11 ms 1536 KB Output is correct
7 Correct 11 ms 1536 KB Output is correct
8 Correct 6 ms 768 KB Output is correct
9 Correct 5 ms 384 KB Output is correct
10 Correct 6 ms 768 KB Output is correct
11 Correct 11 ms 1536 KB Output is correct
12 Correct 10 ms 1536 KB Output is correct
13 Correct 4 ms 384 KB Output is correct
14 Correct 12 ms 1536 KB Output is correct
15 Correct 5 ms 384 KB Output is correct
16 Correct 11 ms 1536 KB Output is correct
17 Correct 4 ms 384 KB Output is correct
18 Correct 11 ms 1536 KB Output is correct
19 Correct 6 ms 768 KB Output is correct
20 Correct 8 ms 1152 KB Output is correct
21 Correct 8 ms 1152 KB Output is correct
22 Correct 6 ms 768 KB Output is correct
23 Correct 13 ms 1792 KB Output is correct
24 Correct 6 ms 768 KB Output is correct
25 Correct 14 ms 1792 KB Output is correct
26 Correct 12 ms 1664 KB Output is correct
27 Correct 11 ms 1536 KB Output is correct
28 Correct 13 ms 1664 KB Output is correct
29 Correct 11 ms 1536 KB Output is correct
30 Correct 13 ms 1792 KB Output is correct
31 Correct 14 ms 1792 KB Output is correct
32 Correct 14 ms 1920 KB Output is correct
33 Correct 14 ms 1792 KB Output is correct
34 Correct 14 ms 1792 KB Output is correct
35 Correct 9 ms 1024 KB Output is correct
36 Correct 9 ms 1024 KB Output is correct
37 Correct 9 ms 1024 KB Output is correct
38 Correct 8 ms 768 KB Output is correct
39 Correct 7 ms 768 KB Output is correct
40 Correct 21 ms 2304 KB Output is correct
41 Correct 7 ms 768 KB Output is correct
42 Correct 19 ms 2304 KB Output is correct
43 Correct 19 ms 2304 KB Output is correct
44 Correct 5 ms 384 KB Output is correct
45 Correct 434 ms 32852 KB Output is correct
46 Correct 136 ms 15480 KB Output is correct
47 Correct 426 ms 33272 KB Output is correct
48 Correct 444 ms 32768 KB Output is correct
49 Correct 87 ms 12276 KB Output is correct
50 Correct 330 ms 31672 KB Output is correct
51 Correct 424 ms 33144 KB Output is correct
52 Correct 73 ms 12280 KB Output is correct
53 Correct 92 ms 12276 KB Output is correct
54 Correct 20 ms 4224 KB Output is correct
55 Correct 353 ms 31604 KB Output is correct
56 Correct 54 ms 8952 KB Output is correct
57 Correct 74 ms 12408 KB Output is correct
58 Correct 125 ms 15328 KB Output is correct
59 Correct 54 ms 8956 KB Output is correct
60 Correct 54 ms 8960 KB Output is correct
61 Correct 127 ms 15224 KB Output is correct
62 Correct 90 ms 12024 KB Output is correct
63 Correct 183 ms 17400 KB Output is correct
64 Correct 54 ms 8952 KB Output is correct
65 Correct 218 ms 20732 KB Output is correct
66 Correct 104 ms 12028 KB Output is correct
67 Correct 188 ms 17272 KB Output is correct
68 Correct 277 ms 21780 KB Output is correct
69 Correct 241 ms 20856 KB Output is correct
70 Correct 89 ms 12152 KB Output is correct
71 Correct 269 ms 21880 KB Output is correct
72 Correct 160 ms 16632 KB Output is correct
73 Correct 330 ms 27512 KB Output is correct
74 Correct 88 ms 12024 KB Output is correct
75 Correct 96 ms 10104 KB Output is correct
76 Correct 173 ms 16760 KB Output is correct
77 Correct 336 ms 27512 KB Output is correct
78 Correct 146 ms 13944 KB Output is correct
79 Correct 109 ms 10116 KB Output is correct
80 Correct 40 ms 5120 KB Output is correct
81 Correct 147 ms 13944 KB Output is correct
82 Correct 227 ms 20344 KB Output is correct
83 Correct 40 ms 5120 KB Output is correct
84 Correct 228 ms 20348 KB Output is correct